
Java™ Servlet Specification

Version 2.5 MR6

Please send technical comments to: servletapi-feedback@sun.com

Please send business comments to: rajiv.mordani@sun.com

August 8th, 2007
Rajiv Mordani(Rajiv.Mordani@Sun.COM)

2

Specification: JSR-000154 Java(tm) Servlet 2.5 ("Specification")

Version: 2.5

Status: Maintenance Release 2

Release: 28 July 2007

Copyright 2007 SUN MICROSYSTEMS, INC.
4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Sun hereby grants you a fully-paid, non-exclusive, non-transfer-
able, worldwide, limited license (without the right to sublicense), under Sun's applicable intellectual
property rights to view, download, use and reproduce the Specification only for the purpose of internal
evaluation. This includes (i) developing applications intended to run on an implementation of the Spec-
ification, provided that such applications do not themselves implement any portion(s) of the Specifica-
tion, and (ii) discussing the Specification with any third party; and (iii) excerpting brief portions of the
Specification in oral or written communications which discuss the Specification provided that such
excerpts do not in the aggregate constitute a significant portion of the Specification.

2. License for the Distribution of Compliant Implementations. Sun also grants you a perpetual, non-
exclusive, non-transferable, worldwide, fully paid-up, royalty free, limited license (without the right to
sublicense) under any applicable copyrights or, subject to the provisions of subsection 4 below, patent
rights it may have covering the Specification to create and/or distribute an Independent Implementation
of the Specification that: (a) fully implements the Specification including all its required interfaces and
functionality; (b) does not modify, subset, superset or otherwise extend the Licensor Name Space, or
include any public or protected packages, classes, Java interfaces, fields or methods within the Licensor
Name Space other than those required/authorized by the Specification or Specifications being imple-
mented; and (c) passes the Technology Compatibility Kit (including satisfying the requirements of the
applicable TCK Users Guide) for such Specification ("Compliant Implementation"). In addition, the
foregoing license is expressly conditioned on your not acting outside its scope. No license is granted
hereunder for any other purpose (including, for example, modifying the Specification, other than to the
extent of your fair use rights, or distributing the Specification to third parties). Also, no right, title, or
interest in or to any trademarks, service marks, or trade names of Sun or Sun's licensors is granted here-
under. Java, and Java-related logos, marks and names are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the previous paragraph or any
other particular "pass through" requirements in any license You grant concerning the use of your Inde-
pendent Implementation or products derived from it. However, except with respect to Independent
Implementations (and products derived from them) that satisfy limitations (a)-(c) from the previous
paragraph, You may neither: (a) grant or otherwise pass through to your licensees any licenses under
Sun's applicable intellectual property rights; nor (b) authorize your licensees to make any claims con-
cerning their implementation's compliance with the Specification in question.

4

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under subparagraph 2 above that would
be infringed by all technically feasible implementations of the Specification, such license is conditioned
upon your offering on fair, reasonable and non-discriminatory terms, to any party seeking it from You, a per-
petual, non-exclusive, non-transferable, worldwide license under Your patent rights which are or would be
infringed by all technically feasible implementations of the Specification to develop, distribute and use a
Compliant Implementation.

b With respect to any patent claims owned by Sun and covered by the license granted under subparagraph 2,
whether or not their infringement can be avoided in a technically feasible manner when implementing the
Specification, such license shall terminate with respect to such claims if You initiate a claim against Sun that
it has, in the course of performing its responsibilities as the Specification Lead, induced any other entity to
infringe Your patent rights.

c Also with respect to any patent claims owned by Sun and covered by the license granted under subpara-
graph 2 above, where the infringement of such claims can be avoided in a technically feasible manner when
implementing the Specification such license, with respect to such claims, shall terminate if You initiate a
claim against Sun that its making, having made, using, offering to sell, selling or importing a Compliant
Implementation infringes Your patent rights.

5. Definitions. For the purposes of this Agreement: "Independent Implementation" shall mean an implemen-
tation of the Specification that neither derives from any of Sun's source code or binary code materials nor,
except with an appropriate and separate license from Sun, includes any of Sun's source code or binary code
materials; "Licensor Name Space" shall mean the public class or interface declarations whose names begin
with "java", "javax", "com.sun" or their equivalents in any subsequent naming convention adopted by Sun
through the Java Community Process, or any recognized successors or replacements thereof; and "Technol-
ogy Compatibility Kit" or "TCK" shall mean the test suite and accompanying TCK User's Guide provided by
Sun which corresponds to the Specification and that was available either (i) from Sun's 120 days before the
first release of Your Independent Implementation that allows its use for commercial purposes, or (ii) more
recently than 120 days from such release but against which You elect to test Your implementation of the
Specification.

This Agreement will terminate immediately without notice from Sun if you breach the Agreement or act out-
side the scope of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WARRAN-
TIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT (INCLUD-
ING AS A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE SPECIFICATION),
OR THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE. This
document does not represent any commitment to release or implement any portion of the Specification in any
product. In addition, the Specification could include technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS
OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAM-
AGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT
OF OR RELATED IN ANY WAY TO YOUR HAVING, IMPELEMENTING OR OTHERWISE USING

5

USING THE SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.
You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting
from: (i) your use of the Specification; (ii) the use or distribution of your Java application, applet and/or
implementation; and/or (iii) any claims that later versions or releases of any Specification furnished to you
are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S.
Government prime contractor or subcontractor (at any tier), then the Government's rights in the Software and
accompanying documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R.
227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and
12.212 (for non-DoD acquisitions).

REPORT

If you provide Sun with any comments or suggestions concerning the Specification ("Feedback"), you
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii)
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to subli-
cense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feed-
back for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal law.
The U.N. Convention for the International Sale of Goods and the choice of law rules of any jurisdiction will
not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations in
other countries. Licensee agrees to comply strictly with all such laws and regulations and acknowledges that
it has the responsibility to obtain such licenses to export, re-export or import as may be required after deliv-
ery to Licensee.

This Agreement is the parties' entire agreement relating to its subject matter. It supersedes all prior or con-
temporaneous oral or written communications, proposals, conditions, representations and warranties and pre-
vails over any conflicting or additional terms of any quote, order, acknowledgment, or other communication
between the parties relating to its subject matter during the term of this Agreement. No modification to this
Agreement will be binding, unless in writing and signed by an authorized representative of each party.

Rev. April, 2006

6

Contents

Java™ Servlet Specification Version 2.5 MR6 1

Preface . 9
Additional Sources . 9
Who Should Read This Specification . 10
API Reference . 10
Other Java Platform Specifications . 10
Other Important References . 11
Providing Feedback . 12
Acknowledgements . 12

SRV.1 Overview . 13
SRV.1.3 An Example . 14
SRV.1.4 Comparing Servlets with Other Technologies 15
SRV.1.5 Relationship to Java Platform, Enterprise Edition 15
SRV.1.6 Compatibility with Java Servlet Specification Version 2.3

15
SRV.1.6.1 HttpSessionListener.sessionDestroyed 15
SRV.1.6.2 ServletRequest methods getRemotePort, getLocal-

Name, getLocalAddr, getLocalPort 16

SRV.2 The Servlet Interface . 17
SRV.2.1 Request Handling Methods . 17

SRV.2.1.1 HTTP Specific Request Handling Methods 17
SRV.2.1.2 Additional Methods . 18
SRV.2.1.3 Conditional GET Support 18
1

CONTENTS 2
SRV.2.2 Number of Instances . 18
SRV.2.2.1 Note About The Single Thread Model 19

SRV.2.3 Servlet Life Cycle . 19
SRV.2.3.1 Loading and Instantiation 19
SRV.2.3.2 Initialization . 20
SRV.2.3.3 Request Handling . 20
SRV.2.3.4 End of Service . 22

SRV.3 The Request . 25
SRV.3.1.1 When Parameters Are Available 26

SRV.3.2 Attributes . 26
SRV.3.3 Headers . 27
SRV.3.4 Request Path Elements . 28
SRV.3.5 Path Translation Methods . 29
SRV.3.6 Cookies . 29
SRV.3.7 SSL Attributes . 30
SRV.3.8 Internationalization . 30
SRV.3.9 Request data encoding . 31
SRV.3.10 Lifetime of the Request Object . 31

SRV.4 Servlet Context . 33
SRV.4.2 Scope of a ServletContext Interface 33
SRV.4.3 Initialization Parameters . 34
SRV.4.4 Context Attributes . 34

SRV.4.4.1 Context Attributes in a Distributed Container . . 34
SRV.4.5 Resources . 35
SRV.4.6 Multiple Hosts and Servlet Contexts 35
SRV.4.7 Reloading Considerations . 35

SRV.4.7.1 Temporary Working Directories 36

SRV.5 The Response . 37
SRV.5.2 Headers . 38
SRV.5.3 Convenience Methods . 39
SRV.5.4 Internationalization . 40
SRV.5.5 Closure of Response Object . 41
SRV.5.6 Lifetime of the Response Object 41

CONTENTS 3
SRV.6 Filtering. 43
SRV.6.1.1 Examples of Filtering Components 44

SRV.6.2 Main Concepts . 44
SRV.6.2.1 Filter Lifecycle . 45
SRV.6.2.2 Wrapping Requests and Responses 46
SRV.6.2.3 Filter Environment . 47
SRV.6.2.4 Configuration of Filters in a Web Application . . 47
SRV.6.2.5 Filters and the RequestDispatcher 50

SRV.7 Sessions . 53
SRV.7.1.1 Cookies . 53
SRV.7.1.2 SSL Sessions . 53
SRV.7.1.3 URL Rewriting . 54
SRV.7.1.4 Session Integrity . 54

SRV.7.2 Creating a Session . 54
SRV.7.3 Session Scope . 54
SRV.7.4 Binding Attributes into a Session 55
SRV.7.5 Session Timeouts . 55
SRV.7.6 Last Accessed Times . 56
SRV.7.7 Important Session Semantics . 56

SRV.7.7.2 Distributed Environments 56
SRV.7.7.3 Client Semantics . 57

SRV.8 Dispatching Requests. 59
SRV.8.1.1 Query Strings in Request Dispatcher Paths 60

SRV.8.2 Using a Request Dispatcher . 60
SRV.8.3 The Include Method . 61

SRV.8.3.1 Included Request Parameters 61
SRV.8.4 The Forward Method . 62

SRV.8.4.1 Query String . 62
SRV.8.4.2 Forwarded Request Parameters 62

SRV.8.5 Error Handling . 63

SRV.9 Web Applications . 64
SRV.9.2 Relationship to ServletContext . 64
SRV.9.3 Elements of a Web Application 65
SRV.9.4 Deployment Hierarchies . 65

CONTENTS 4
SRV.9.5 Directory Structure .65
SRV.9.5.1 Example of Application Directory Structure66

SRV.9.6 Web Application Archive File .67
SRV.9.7 Web Application Deployment Descriptor67

SRV.9.7.1 Dependencies On Extensions67
SRV.9.7.2 Web Application Class Loader 68

SRV.9.8 Replacing a Web Application .69
SRV.9.9 Error Handling .69

SRV.9.9.1 Request Attributes .69
SRV.9.9.2 Error Pages .70
SRV.9.9.3 Error Filters .71

SRV.9.10 Welcome Files .71
SRV.9.11 Web Application Environment .73
SRV.9.12 Web Application Deployment .73
SRV.9.13 Inclusion of a web.xml Deployment Descriptor 73

SRV.10 Application Lifecycle Events .75
SRV.10.2 Event Listeners .75

SRV.10.2.1 Event Types and Listener Interfaces 76
SRV.10.2.2 An Example of Listener Use 77

SRV.10.3 Listener Class Configuration .77
SRV.10.3.1 Provision of Listener Classes77
SRV.10.3.2 Deployment Declarations 78
SRV.10.3.3 Listener Registration .78
SRV.10.3.4 Notifications At Shutdown 78

SRV.10.4 Deployment Descriptor Example78
SRV.10.5 Listener Instances and Threading 79
SRV.10.6 Listener Exceptions .79
SRV.10.7 Distributed Containers .80
SRV.10.8 Session Events .80

SRV.11 Mapping Requests to Servlets .81
SRV.11.2 Specification of Mappings .82

SRV.11.2.1 Implicit Mappings .82
SRV.11.2.2 Example Mapping Set .83

CONTENTS 5
SRV.12 Security. 85
SRV.12.2 Declarative Security . 86
SRV.12.3 Programmatic Security . 86
SRV.12.4 Roles . 88
SRV.12.5 Authentication . 88

SRV.12.5.1 HTTP Basic Authentication 88
SRV.12.5.2 HTTP Digest Authentication 89
SRV.12.5.3 Form Based Authentication 89
SRV.12.5.4 HTTPS Client Authentication 91

SRV.12.6 Server Tracking of Authentication Information 91
SRV.12.7 Specifying Security Constraints 91

SRV.12.7.1 Combining Constraints . 93
SRV.12.7.2 Example . 93
SRV.12.7.3 Processing Requests . 95

SRV.12.8 Default Policies . 96
SRV.12.9 Login and Logout . 96

SRV.13 Deployment Descriptor . 99
SRV.13.1 Deployment Descriptor Elements 99
SRV.13.2 Rules for Processing the Deployment Descriptor 100
SRV.13.3 Deployment Descriptor . 101
SRV.13.4 Deployment Descriptor Diagram 129
SRV.13.5 Examples . 146

SRV.13.5.1 A Basic Example . 147
SRV.13.5.2 An Example of Security 148

SRV.14 Java Enterprise Edition 5 Containers 150
SRV.14.1 Sessions . 150
SRV.14.2 Web Applications . 150

SRV.14.2.1 Web Application Class Loader 151
SRV.14.2.2 Web Application Environment 151

SRV.14.3 Security . 152
SRV.14.3.1 Propagation of Security Identity in EJBTM Calls .

152
SRV.14.4 Deployment . 152

SRV.14.4.1 Deployment Descriptor Elements 152
SRV.14.4.2 Packaging and Deployment of JAX-WS Compo-

CONTENTS 6
nents 153
SRV.14.4.3 Rules for Processing the Deployment Descriptor . .

154
SRV.14.5 Annotations and Resource Injection 155

SRV.14.5.1 @DeclaresRoles . 156
SRV.14.5.2 @EJB Annotation . 157
SRV.14.5.3 @EJBs Annotation . 157
SRV.14.5.4 @Resource Annotation 158
SRV.14.5.5 @PersistenceContext Annotation 158
SRV.14.5.6 @PersistenceContexts Annotation 159
SRV.14.5.7 @PersistenceUnit Annotation 159
SRV.14.5.8 @PersistenceUnits Annotation 159
SRV.14.5.9 @PostConstruct Annotation 160
SRV.14.5.10 @PreDestroy Annotation 160
SRV.14.5.11 @Resources Annotation 161
SRV.14.5.12 @RunAs Annotation . 161
SRV.14.5.13 @WebServiceRef Annotation 162
SRV.14.5.14 @WebServiceRefs Annotation 162

SRV.15 javax.servlet . 164
SRV.15.1 Generic Servlet Interfaces and Classes 164
SRV.15.2 The javax.servlet package . 164

SRV.15.2.1 Filter . 167
SRV.15.2.2 FilterChain . 169
SRV.15.2.3 FilterConfig . 169
SRV.15.2.4 GenericServlet . 170
SRV.15.2.5 RequestDispatcher . 175
SRV.15.2.6 Servlet . 176
SRV.15.2.7 ServletConfig . 179
SRV.15.2.8 ServletContext . 180
SRV.15.2.9 ServletContextAttributeEvent 189
SRV.15.2.10 ServletContextAttributeListener 190
SRV.15.2.11 ServletContextEvent . 191
SRV.15.2.12 ServletContextListener 191
SRV.15.2.13 ServletException . 192
SRV.15.2.14 ServletInputStream . 193
SRV.15.2.15 ServletOutputStream . 194
SRV.15.2.16 ServletRequest . 199

CONTENTS 7
SRV.15.2.17 ServletRequestAttributeEvent 207
SRV.15.2.18 ServletRequestAttributeListener 208
SRV.15.2.19 ServletRequestEvent . 209
SRV.15.2.20 ServletRequestListener 209
SRV.15.2.21 ServletRequestWrapper 210
SRV.15.2.22 ServletResponse . 217
SRV.15.2.23 ServletResponseWrapper 223
SRV.15.2.24 SingleThreadModel . 227
SRV.15.2.25 UnavailableException 227

SRV.16 javax.servlet.http . 232
SRV.16.1 Servlets Using HTTP Protocol 232

SRV.16.1.1 Cookie . 234
SRV.16.1.2 HttpServlet . 239
SRV.16.1.3 HttpServletRequest . 247
SRV.16.1.4 HttpServletRequestWrapper 255
SRV.16.1.5 HttpServletResponse . 261
SRV.16.1.6 HttpServletResponseWrapper 272
SRV.16.1.7 HttpSession . 276
SRV.16.1.8 HttpSessionActivationListener 281
SRV.16.1.9 HttpSessionAttributeListener 282
SRV.16.1.10 HttpSessionBindingEvent 282
SRV.16.1.11 HttpSessionBindingListener 284
SRV.16.1.12 HttpSessionContext . 285
SRV.16.1.13 HttpSessionEvent . 285
SRV.16.1.14 HttpSessionListener . 286
SRV.16.1.15 HttpUtils . 287

Change Log . 290
Changes since Servlet 2.5 MR 5 . 290

SRV.17.0.1 Clarify SRV 8.4 "The Forward Method" 290
SRV.17.0.2 Update Deployment descriptor "http-method values

allowed" 290
SRV.17.0.3 Clarify SRV 7.7.1 "Threading Issues" 291

Changes Since Servlet 2.5 MR 2 . 291
SRV.18.0.1 Updated Annotation Requirements for Java EE con-

tainers 291
SRV.18.0.2 Updated Java Enterprise Edition Requirements 291

CONTENTS 8
SRV.18.0.3 Clarified HttpServletRequest.getRequestURL() 291
SRV.18.0.4 Removal of IllegalStateException from HttpSes-

sion.getId() 292
SRV.18.0.5 ServletContext.getContextPath() 292
SRV.18.0.6 Requirement for web.xml in web applications . 293

Changes Since Servlet 2.4 . 293
SRV.19.0.1 Session Clarification . 293
SRV.19.0.2 Filter All Dispatches . 294
SRV.19.0.3 Multiple Occurrences of Servlet Mappings . . . 294
SRV.19.0.4 Multiple Occurrences Filter Mappings 295
SRV.19.0.5 Support Alternative HTTP Methods with Authoriza-

tion Constraints 296
SRV.19.0.6 Minimum J2SE Requirement 297
SRV.19.0.7 Annotations and Resource Injection 297
SRV.19.0.8 SRV.9.9 ("Error Handling") Requirement Removed

297
SRV.19.0.9 HttpServletRequest.isRequestedSessionIdValid()

Clarification 297
SRV.19.0.10 SRV.5.5 ("Closure of Response Object") Clarifica-

tion 298
SRV.19.0.11 ServletRequest.setCharacterEncoding() Clarified .

298
SRV.19.0.12 Java Enterprise Edition Requirements 298
SRV.19.0.13 Servlet 2.4 MR Change Log Updates Added . . 298
SRV.19.0.14 Synchronized Access Session Object Clarified 298

Changes Since Servlet 2.3 . 299

Preface

This document is the Java™ Servlet Specification, version 2.5. The standard for
the Java Servlet API is described herein.

SRV.P.1 Additional Sources

The specification is intended to be a complete and clear explanation of Java Serv-
lets, but if questions remain, the following sources may be consulted:

• A reference implementation (RI) has been made available which provides a be-
havioral benchmark for this specification. Where the specification leaves im-
plementation of a particular feature open to interpretation, implementors may
use the reference implementation as a model of how to carry out the intention
of the specification.

• A compatibility test suite (CTS) has been provided for assessing whether im-
plementations meet the compatibility requirements of the Java Servlet API
standard. The test results have normative value for resolving questions about
whether an implementation is standard.

• If further clarification is required, the working group for the Java Servlet API
under the Java Community Process should be consulted, and is the final arbiter
of such issues.

Comments and feedback are welcome, and will be used to improve future ver-
sions.
9

PREFACE

Fi

10
SRV.P.2 Who Should Read This Specification

The intended audience for this specification includes the following groups:

• Web server and application server vendors that want to provide servlet engines
that conform to this standard.

• Authoring tool developers that want to support Web applications that conform
to this specification

• Experienced servlet authors who want to understand the underlying mecha-
nisms of servlet technology.

We emphasize that this specification is not a user’s guide for servlet develop-
ers and is not intended to be used as such. References useful for this purpose are
available from http://java.sun.com/products/servlet.

SRV.P.3 API Reference

Chapter SRV.15, “javax.servlet”, includes the full specifications of classes, inter-
faces, and method signatures that define the Java Servlet API, as well as their
accompanying JavadocTM documentation.

SRV.P.4 Other Java Platform Specifications

The following Java API specifications are referenced throughout this specifica-
tion:

• Java Platform, Enterprise Edition ("Java EE"), version 5

• JavaServer Pages™ ("JSPTM"), version 2.1

• Java Naming and Directory InterfaceTM ("J.N.D.I.").

These specifications may be found at the Java Platform, Enterprise Edition
Web site: http://java.sun.com/javaee/.
nal Version

Other Important References 11
SRV.P.5 Other Important References

The following Internet specifications provide information relevant to the develop-
ment and implementation of the Java Servlet API and standard servlet engines:

• RFC 1630 Uniform Resource Identifiers (URI)

• RFC 1738 Uniform Resource Locators (URL)

• RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax

• RFC 1808 Relative Uniform Resource Locators

• RFC 1945 Hypertext Transfer Protocol (HTTP/1.0)

• RFC 2045 MIME Part One: Format of Internet Message Bodies

• RFC 2046 MIME Part Two: Media Types

• RFC 2047 MIME Part Three: Message Header Extensions for non-ASCII text

• RFC 2048 MIME Part Four: Registration Procedures

• RFC 2049 MIME Part Five: Conformance Criteria and Examples

• RFC 2109 HTTP State Management Mechanism

• RFC 2145 Use and Interpretation of HTTP Version Numbers

• RFC 2324 Hypertext Coffee Pot Control Protocol (HTCPCP/1.0)1

• RFC 2616 Hypertext Transfer Protocol (HTTP/1.1)

• RFC 2617 HTTP Authentication: Basic and Digest Authentication

Online versions of these RFCs are at http://wwww.ietf.org/rfc/.
The World Wide Web Consortium (http://www.w3.org/) is a definitive

source of HTTP related information affecting this specification and its implemen-
tations.

The eXtensible Markup Language (XML) is used for the specification of the
Deployment Descriptors described in Chapter 13 of this specification. More infor-
mation about XML can be found at the following Web sites:

1. This reference is mostly tongue-in-cheek although most of the concepts
described in the HTCPCP RFC are relevant to all well-designed Web
servers.

PREFACE

Fi

12
http://java.sun.com/xml

http://www.xml.org/

SRV.P.6 Providing Feedback

We welcome any and all feedback about this specification. Please e-mail your
comments to servletapi-feedback@eng.sun.com.

Please note that due to the volume of feedback that we receive, you will not
normally receive a reply from an engineer. However, each and every comment is
read, evaluated, and archived by the specification team.

SRV.P.7 Acknowledgements

The servlet specification has now undergone a number of revisions since the
first version, and the contributors to this specification are many and various. For
the version 2.5, we’d like to thank the members of the JSR154 expert group for
their continued contributions: Greg Wilkins (Mort Bay Consulting), Jason Hunter
(Individual), Rémy Maucherat (JBOSS), Nathan Abramson (ATG), Vinod Mehra
(BEA), Prasanth Pallamreddy (BEA), Joyce Yang (Oracle), Todd Kaplinger
(IBM), Kevin Jones (Developmentor), Timothy Julien (HP), Jon Stephens (Indi-
vidual), Pier Fumagali (Apache), Karl Adeval (Orion), Hans Bergsten (Individ-
ual), Tim Ampe (Persistence Software), Jason McGee (IBM), Nic Ferrier
(Individual), Rod Johnson (Individual), Bryan Astatt (Oracle), John Rousseau
(Silverstream), Paul Bonafanti (New Atlanta), Karl Moss (Macromedia), Larry
Isaacs (SAS), Vishy Kasar (Borland), BV Prasad (Pramati), Bill DeHora (InterX),
Randal Hanford (Boeing), Ciaran Dynes (Iona), Ana von Klopp (Sun), Jeff Plager
(Sybase), and Shawn McMurdo (Lutris).

We’d like to thank the many people from the Java Community who have sent us
feedback on the specification.

Finally we thank fellow colleagues at Sun who have provided feedback and com-
ment, in particular JeanFrancois Arcand, Ed Burns, Roberto Chinnici, Pierre
Delisle, Jan Luehe, Craig McClanahan, Ron Monzillo, Rajiv Mordani, Dhiru Pan-
dey, Amy Roh, Bill Shannon, and Yutaka Yoshida for applying continued techni-
cal critique and support of the specification, Debbie Carson for the editorial work
throughout this specification, and Karen Schaffer along with Jim Driscoll for
release management.
nal Version

C H A P T E R SRV.1

Overview

SRV.1.1 What is a Servlet?

A servlet is a JavaTM technology-based Web component, managed by a container,
that generates dynamic content. Like other Java technology-based components,
servlets are platform-independent Java classes that are compiled to platform-neutral
byte code that can be loaded dynamically into and run by a Java technology-enabled
Web server. Containers, sometimes called servlet engines, are Web server extensions
that provide servlet functionality. Servlets interact with Web clients via a request/
response paradigm implemented by the servlet container.

SRV.1.2 What is a Servlet Container?

The servlet container is a part of a Web server or application server that provides the
network services over which requests and responses are sent, decodes MIME-based
requests, and formats MIME-based responses. A servlet container also contains and
manages servlets through their lifecycle.

A servlet container can be built into a host Web server, or installed as an add-
on component to a Web Server via that server’s native extension API. Servlet con-
tainers can also be built into or possibly installed into Web-enabled application
servers.

All servlet containers must support HTTP as a protocol for requests and
responses, but additional request/response-based protocols such as HTTPS (HTTP
over SSL) may be supported. The required versions of the HTTP specification that
a container must implement are HTTP/1.0 and HTTP/1.1. Because the container
may have a caching mechanism described in RFC2616(HTTP/1.1), it may modify
requests from the clients before delivering them to the servlet, may modify
responses produced by servlets before sending them to the clients, or may respond
13

OVERVIEW

Fi

14
to requests without delivering them to the servlet under the compliance with
RFC2616.

A servlet container may place security restrictions on the environment in
which a servlet executes. In a Java Platform, Standard Edition (J2SE, v.1.3 or
above) or Java Platform, Enterprise Edition (Java EE, v.1.3 or above) environ-
ment, these restrictions should be placed using the permission architecture defined
by the Java platform. For example, high-end application servers may limit the cre-
ation of a Thread object to insure that other components of the container are not
negatively impacted.

J2SE 5.0 is the minimum version of the underlying Java platform with which
servlet containers must be built.

SRV.1.3 An Example

The following is a typical sequence of events:

1. A client (e.g., a Web browser) accesses a Web server and makes an HTTP re-
quest.

2. The request is received by the Web server and handed off to the servlet con-
tainer. The servlet container can be running in the same process as the host
Web server, in a different process on the same host, or on a different host from
the Web server for which it processes requests.

3. The servlet container determines which servlet to invoke based on the config-
uration of its servlets, and calls it with objects representing the request and re-
sponse.

4. The servlet uses the request object to find out who the remote user is, what
HTTP POST parameters may have been sent as part of this request, and other
relevant data. The servlet performs whatever logic it was programmed with,
and generates data to send back to the client. It sends this data back to the client
via the response object.

5. Once the servlet has finished processing the request, the servlet container en-
sures that the response is properly flushed, and returns control back to the host
Web server.
nal Version

Comparing Servlets with Other Technologies 15
SRV.1.4 Comparing Servlets with Other Technologies

In functionality, servlets lie somewhere between Common Gateway Interface (CGI)
programs and proprietary server extensions such as the Netscape Server API
(NSAPI) or Apache Modules.

Servlets have the following advantages over other server extension mecha-
nisms:

• They are generally much faster than CGI scripts because a different process
model is used.

• They use a standard API that is supported by many Web servers.

• They have all the advantages of the Java programming language, including
ease of development and platform independence.

• They can access the large set of APIs available for the Java platform.

SRV.1.5 Relationship to Java Platform, Enterprise Edition

The Java Servlet API v.2.5 is a required API of the Java Platform, Enterprise Edi-
tion, v.51. Servlet containers and servlets deployed into them must meet additional
requirements, described in the Java EE specification, for executing in a Java EE
environment.

SRV.1.6 Compatibility with Java Servlet Specification
Version 2.3

This section describes the compatibility issues introduced in this version of the spec-
ification.

SRV.1.6.1 HttpSessionListener.sessionDestroyed

In the previous versions of the specification, this method was defined as:

Notification that a session was invalidated.

As of Version 2.4, this method is changed to:

1. Please see the JavaTM 2 Platform, Enterprise Edition specification avail-
able at http://java.sun.com/javaee/

OVERVIEW

Fi

16
Notification that a session is about to be invalidated

so that it notifies before the session invalidation. If the code assumed the pre-
vious behavior, it must be modified to match the new behavior.

SRV.1.6.2 ServletRequest methods getRemotePort, getLocalName,
getLocalAddr, getLocalPort

The following methods are added in the ServletRequest interface in this version of
the specification.

public int getRemotePort()

Returns the Internet Protocol (IP) source port of the client or last proxy

that sent the request.

public java.lang.String getLocalName()

Returns the host name of the Internet Protocol (IP) interface

on which the request was received.

public java.lang.String getLocalAddr()

Returns the Internet Protocol (IP) address of the interface

on which the request was received.

public int getLocalPort()

Returns the Internet Protocol (IP) port number of the interface

on which the request was received.

Be aware that this addition causes source incompatibility in some cases, such
as when a developer implements the ServletRequest interface. In this case, ensure
that all the new methods are implemented.
nal Version

C H A P T E R SRV.2

The Servlet Interface

The Servlet interface is the central abstraction of the Java Servlet API. All servlets
implement this interface either directly, or more commonly, by extending a class that
implements the interface. The two classes in the Java Servlet API that implement the
Servlet interface are GenericServlet and HttpServlet. For most purposes, Devel-
opers will extend HttpServlet to implement their servlets.

SRV.2.1 Request Handling Methods

The basic Servlet interface defines a service method for handling client requests.
This method is called for each request that the servlet container routes to an instance
of a servlet.

The handling of concurrent requests to a Web application generally requires
that the Web Developer design servlets that can deal with multiple threads execut-
ing within the service method at a particular time.

Generally the Web container handles concurrent requests to the same servlet
by concurrent execution of the service method on different threads.

SRV.2.1.1 HTTP Specific Request Handling Methods

The HttpServlet abstract subclass adds additional methods beyond the basic
Servlet interface that are automatically called by the service method in the
HttpServlet class to aid in processing HTTP-based requests. These methods are:

• doGet for handling HTTP GET requests

• doPost for handling HTTP POST requests

• doPut for handling HTTP PUT requests
17

THE SERVLET INTERFACE

Fi

18
• doDelete for handling HTTP DELETE requests

• doHead for handling HTTP HEAD requests

• doOptions for handling HTTP OPTIONS requests

• doTrace for handling HTTP TRACE requests

Typically when developing HTTP-based servlets, a Servlet Developer will
only concern himself with the doGet and doPost methods. The other methods are
considered to be methods for use by programmers very familiar with HTTP pro-
gramming.

SRV.2.1.2 Additional Methods

The doPut and doDelete methods allow Servlet Developers to support HTTP/1.1
clients that employ these features. The doHead method in HttpServlet is a special-
ized form of the doGet method that returns only the headers produced by the doGet
method. The doOptions method responds with which HTTP methods are supported
by the servlet. The doTrace method generates a response containing all instances of
the headers sent in the TRACE request.

SRV.2.1.3 Conditional GET Support

The HttpServlet interface defines the getLastModified method to support condi-
tional GET operations. A conditional GET operation requests a resource be sent only if
it has been modified since a specified time. In appropriate situations, implementa-
tion of this method may aid efficient utilization of network resources.

SRV.2.2 Number of Instances

The servlet declaration which is part of the deployment descriptor of the Web appli-
cation containing the servlet, as described in Chapter SRV.13, “Deployment
Descriptor”, controls how the servlet container provides instances of the servlet.

For a servlet not hosted in a distributed environment (the default), the servlet
container must use only one instance per servlet declaration. However, for a serv-
let implementing the SingleThreadModel interface, the servlet container may
instantiate multiple instances to handle a heavy request load and serialize requests
to a particular instance.
nal Version

Servlet Life Cycle 19
In the case where a servlet was deployed as part of an application marked in
the deployment descriptor as distributable, a container may have only one instance
per servlet declaration per Java Virtual Machine (JVMTM)1. However, if the servlet
in a distributable application implements the SingleThreadModel interface, the
container may instantiate multiple instances of that servlet in each JVM of the
container.

SRV.2.2.1 Note About The Single Thread Model

The use of the SingleThreadModel interface guarantees that only one thread at a
time will execute in a given servlet instance’s service method. It is important to
note that this guarantee only applies to each servlet instance, since the container may
choose to pool such objects. Objects that are accessible to more than one servlet
instance at a time, such as instances of HttpSession, may be available at any partic-
ular time to multiple servlets, including those that implement SingleThreadModel.
It is recommended that a developer take other means to resolve those issues instead
of implementing this interface, such as avoiding the usage of an instance variable or
synchronizing the block of the code accessing those resources. The
SingleThreadModel Interface is deprecated in this version of the specification.

SRV.2.3 Servlet Life Cycle

A servlet is managed through a well defined life cycle that defines how it is loaded
and instantiated, is initialized, handles requests from clients, and is taken out of ser-
vice. This life cycle is expressed in the API by the init, service, and destroy
methods of the javax.servlet.Servlet interface that all servlets must implement
directly or indirectly through the GenericServlet or HttpServlet abstract classes.

SRV.2.3.1 Loading and Instantiation

The servlet container is responsible for loading and instantiating servlets. The load-
ing and instantiation can occur when the container is started, or delayed until the
container determines the servlet is needed to service a request.

When the servlet engine is started, needed servlet classes must be located by
the servlet container. The servlet container loads the servlet class using normal
Java class loading facilities. The loading may be from a local file system, a remote
file system, or other network services.

1. The terms "Java virtual machine" and "JVM" mean a virtual machine for the Java(TM) platform.

THE SERVLET INTERFACE

Fi

20
After loading the Servlet class, the container instantiates it for use.

SRV.2.3.2 Initialization

After the servlet object is instantiated, the container must initialize the servlet before
it can handle requests from clients. Initialization is provided so that a servlet can
read persistent configuration data, initialize costly resources (such as JDBC™ API-
based connections), and perform other one-time activities. The container initializes
the servlet instance by calling the init method of the Servlet interface with a
unique (per servlet declaration) object implementing the ServletConfig interface.
This configuration object allows the servlet to access name-value initialization
parameters from the Web application’s configuration information. The configuration
object also gives the servlet access to an object (implementing the ServletContext
interface) that describes the servlet’s runtime environment. See Chapter SRV.4,
“Servlet Context” for more information about the ServletContext interface.

SRV.2.3.2.1 Error Conditions on Initialization

During initialization, the servlet instance can throw an UnavailableException or a
ServletException. In this case, the servlet must not be placed into active service
and must be released by the servlet container. The destroy method is not called as it
is considered unsuccessful initialization.

A new instance may be instantiated and initialized by the container after a
failed initialization. The exception to this rule is when an UnavailableException
indicates a minimum time of unavailability, and the container must wait for the
period to pass before creating and initializing a new servlet instance.

SRV.2.3.2.2 Tool Considerations

The triggering of static initialization methods when a tool loads and introspects a
Web application is to be distinguished from the calling of the init method. Devel-
opers should not assume a servlet is in an active container runtime until the init
method of the Servlet interface is called. For example, a servlet should not try to
establish connections to databases or Enterprise JavaBeans™ containers when only
static (class) initialization methods have been invoked.

SRV.2.3.3 Request Handling

After a servlet is properly initialized, the servlet container may use it to handle client
requests. Requests are represented by request objects of type ServletRequest. The
servlet fills out response to requests by calling methods of a provided object of type
nal Version

Servlet Life Cycle 21
ServletResponse. These objects are passed as parameters to the service method of
the Servlet interface.

In the case of an HTTP request, the objects provided by the container are of
types HttpServletRequest and HttpServletResponse.

Note that a servlet instance placed into service by a servlet container may han-
dle no requests during its lifetime.

SRV.2.3.3.1 Multithreading Issues

A servlet container may send concurrent requests through the service method of
the servlet. To handle the requests, the Servlet Developer must make adequate provi-
sions for concurrent processing with multiple threads in the service method.

Although it is not recommended, an alternative for the Developer is to imple-
ment the SingleThreadModel interface which requires the container to guarantee
that there is only one request thread at a time in the service method. A servlet
container may satisfy this requirement by serializing requests on a servlet, or by
maintaining a pool of servlet instances. If the servlet is part of a Web application
that has been marked as distributable, the container may maintain a pool of servlet
instances in each JVM that the application is distributed across.

For servlets not implementing the SingleThreadModel interface, if the
service method (or methods such as doGet or doPost which are dispatched to the
service method of the HttpServlet abstract class) has been defined with the
synchronized keyword, the servlet container cannot use the instance pool
approach, but must serialize requests through it. It is strongly recommended that
Developers not synchronize the service method (or methods dispatched to it) in
these circumstances because of detrimental effects on performance.

SRV.2.3.3.2 Exceptions During Request Handling

A servlet may throw either a ServletException or an UnavailableException dur-
ing the service of a request. A ServletException signals that some error occurred
during the processing of the request and that the container should take appropriate
measures to clean up the request.

An UnavailableException signals that the servlet is unable to handle requests
either temporarily or permanently.

If a permanent unavailability is indicated by the UnavailableException, the
servlet container must remove the servlet from service, call its destroy method,
and release the servlet instance. Any requests refused by the container by that
cause must be returned with a SC_NOT_FOUND (404) response.

If temporary unavailability is indicated by the UnavailableException, the
container may choose to not route any requests through the servlet during the time

THE SERVLET INTERFACE

Fi

22
period of the temporary unavailability. Any requests refused by the container dur-
ing this period must be returned with a SC_SERVICE_UNAVAILABLE (503) response
status along with a Retry-After header indicating when the unavailability will
terminate.

The container may choose to ignore the distinction between a permanent and
temporary unavailability and treat all UnavailableExceptions as permanent,
thereby removing a servlet that throws any UnavailableException from service.

SRV.2.3.3.3 Thread Safety

Implementations of the request and response objects are not guaranteed to be thread
safe. This means that they should only be used within the scope of the request han-
dling thread.

References to the request and response objects should not be given to objects
executing in other threads as the resulting behavior may be nondeterministic. If
the thread created by the application uses the container-managed objects, such as
the request or response object, those objects must be accessed only within the
servlet’s service life cycle and such thread itself should have a life cycle within
the life cycle of the servlet’s service method because accessing those objects
after the service method ends may cause undeterministic problems. Be aware that
the request and response objects are not thread safe. If those objects were accessed
in the multiple threads, the access should be synchronized or be done through the
wrapper to add the thread safety, for instance, synchronizing the call of the meth-
ods to access the request attribute, or using a local output stream for the response
object within a thread.

SRV.2.3.4 End of Service

The servlet container is not required to keep a servlet loaded for any particular
period of time. A servlet instance may be kept active in a servlet container for a
period of milliseconds, for the lifetime of the servlet container (which could be a
number of days, months, or years), or any amount of time in between.

When the servlet container determines that a servlet should be removed from
service, it calls the destroy method of the Servlet interface to allow the servlet to
release any resources it is using and save any persistent state. For example, the
container may do this when it wants to conserve memory resources, or when it is
being shut down.

Before the servlet container calls the destroy method, it must allow any
threads that are currently running in the service method of the servlet to complete
execution, or exceed a server-defined time limit.
nal Version

Servlet Life Cycle 23
Once the destroy method is called on a servlet instance, the container may
not route other requests to that instance of the servlet. If the container needs to
enable the servlet again, it must do so with a new instance of the servlet’s class.

After the destroy method completes, the servlet container must release the
servlet instance so that it is eligible for garbage collection.

THE SERVLET INTERFACE

Fi

24
nal Version

CHAPTER SRV.3

The Request

The request object encapsulates all information from the client request. In the HTTP
protocol, this information is transmitted from the client to the server in the HTTP
headers and the message body of the request.

SRV.3.1 HTTP Protocol Parameters

Request parameters for the servlet are the strings sent by the client to a servlet
container as part of its request. When the request is an HttpServletRequest object,
and conditions set out in “When Parameters Are Available” on page 26 are met, the
container populates the parameters from the URI query string and POST-ed data.

The parameters are stored as a set of name-value pairs. Multiple parameter
values can exist for any given parameter name. The following methods of the
ServletRequest interface are available to access parameters:

• getParameter

• getParameterNames

• getParameterValues
• getParameterMap

The getParameterValues method returns an array of String objects
containing all the parameter values associated with a parameter name. The value
returned from the getParameter method must be the first value in the array of
String objects returned by getParameterValues. The getParameterMap method
returns a java.util.Map of the parameter of the request, which contains names as
keys and parameter values as map values.

Data from the query string and the post body are aggregated into the request
parameter set. Query string data is presented before post body data. For example,
25

THE REQUEST

Fi

26
if a request is made with a query string of a=hello and a post body of
a=goodbye&a=world, the resulting parameter set would be ordered a=(hello,
goodbye, world).

Path parameters that are part of a GET request (as defined by HTTP 1.1) are not
exposed by these APIs. They must be parsed from the String values returned by the
getRequestURI method or the getPathInfo method.

SRV.3.1.1 When Parameters Are Available

The following are the conditions that must be met before post form data will
be populated to the parameter set:

1. The request is an HTTP or HTTPS request.

2. The HTTP method is POST.

3. The content type is application/x-www-form-urlencoded.

4. The servlet has made an initial call of any of the getParameter family of meth-
ods on the request object.

If the conditions are not met and the post form data is not included in the
parameter set, the post data must still be available to the servlet via the request
object’s input stream. If the conditions are met, post form data will no longer be
available for reading directly from the request object’s input stream.

SRV.3.2 Attributes

Attributes are objects associated with a request. Attributes may be set by the
container to express information that otherwise could not be expressed via the API,
or may be set by a servlet to communicate information to another servlet (via the
RequestDispatcher). Attributes are accessed with the following methods of the
ServletRequest interface:

• getAttribute

• getAttributeNames

• setAttribute

Only one attribute value may be associated with an attribute name.
nal Version

Headers 27
Attribute names beginning with the prefixes of “java.” and “javax.” are
reserved for definition by this specification. Similarly, attribute names beginning
with the prefixes of “sun.”, and “com.sun.” are reserved for definition by Sun
Microsystems. It is suggested that all attributes placed in the attribute set be
named in accordance with the reverse domain name convention suggested by the
Java Programming Language Specification1 for package naming.

SRV.3.3 Headers

A servlet can access the headers of an HTTP request through the following methods
of the HttpServletRequest interface:

• getHeader

• getHeaders
• getHeaderNames

The getHeader method returns a header given the name of the header. There can
be multiple headers with the same name, e.g. Cache-Control headers, in an HTTP
request. If there are multiple headers with the same name, the getHeader method
returns the first header in the request. The getHeaders method allows access to all
the header values associated with a particular header name, returning an
Enumeration of String objects.

Headers may contain String representations of int or Date data. The
following convenience methods of the HttpServletRequest interface provide
access to header data in a one of these formats:

• getIntHeader

• getDateHeader

If the getIntHeader method cannot translate the header value to an int, a
NumberFormatException is thrown. If the getDateHeader method cannot translate
the header to a Date object, an IllegalArgumentException is thrown.

1. The Java Programming Language Specification is available at http://
java.sun.com/docs/books/jls

THE REQUEST

Fi

28
SRV.3.4 Request Path Elements

The request path that leads to a servlet servicing a request is composed of many
important sections. The following elements are obtained from the request URI path
and exposed via the request object:

• Context Path: The path prefix associated with the ServletContext that this
servlet is a part of. If this context is the “default” context rooted at the base of
the Web server’s URL name space, this path will be an empty string. Other-
wise, if the context is not rooted at the root of the server’s name space, the path
starts with a’/’ character but does not end with a’/’ character.

• Servlet Path: The path section that directly corresponds to the mapping
which activated this request. This path starts with a’/’ character except in the
case where the request is matched with the ‘/*’ pattern, in which case it is an
empty string.

• PathInfo: The part of the request path that is not part of the Context Path or
the Servlet Path. It is either null if there is no extra path, or is a string with a
leading ‘/’.

The following methods exist in the HttpServletRequest interface to access
this information:

• getContextPath

• getServletPath
• getPathInfo

It is important to note that, except for URL encoding differences between the
request URI and the path parts, the following equation is always true:

requestURI = contextPath + servletPath + pathInfo

To give a few examples to clarify the above points, consider the following:

Table 1: Example Context Set Up

Context Path /catalog

Servlet Mapping Pattern: /lawn/*
Servlet: LawnServlet

Servlet Mapping Pattern: /garden/*
Servlet: GardenServlet
nal Version

Path Translation Methods 29
The following behavior is observed:

SRV.3.5 Path Translation Methods

There are two convenience methods in the API which allow the Developer to obtain
the file system path equivalent to a particular path. These methods are:

• ServletContext.getRealPath

• HttpServletRequest.getPathTranslated

The getRealPath method takes a String argument and returns a String
representation of a file on the local file system to which a path corresponds. The
getPathTranslated method computes the real path of the pathInfo of the request.

In situations where the servlet container cannot determine a valid file path for
these methods, such as when the Web application is executed from an archive, on
a remote file system not accessible locally, or in a database, these methods must
return null.

SRV.3.6 Cookies

The HttpServletRequest interface provides the getCookies method to obtain an
array of cookies that are present in the request. These cookies are data sent from the

Servlet Mapping Pattern: *.jsp
Servlet: JSPServlet

Table 2: Observed Path Element Behavior

Request Path Path Elements

/catalog/lawn/index.html ContextPath: /catalog
ServletPath: /lawn
PathInfo: /index.html

/catalog/garden/implements/ ContextPath: /catalog
ServletPath: /garden
PathInfo: /implements/

/catalog/help/feedback.jsp ContextPath: /catalog
ServletPath: /help/feedback.jsp
PathInfo: null

Table 1: Example Context Set Up

THE REQUEST

Fi

30
client to the server on every request that the client makes. Typically, the only
information that the client sends back as part of a cookie is the cookie name and the
cookie value. Other cookie attributes that can be set when the cookie is sent to the
browser, such as comments, are not typically returned.

SRV.3.7 SSL Attributes

If a request has been transmitted over a secure protocol, such as HTTPS, this
information must be exposed via the isSecure method of the ServletRequest
interface. The Web container must expose the following attributes to the servlet
programmer:

If there is an SSL certificate associated with the request, it must be exposed by
the servlet container to the servlet programmer as an array of objects of type
java.security.cert.X509Certificate and accessible via a ServletRequest
attribute of javax.servlet.request.X509Certificate.

The order of this array is defined as being in ascending order of trust. The first
certificate in the chain is the one set by the client, the next is the one used to
authenticate the first, and so on.

SRV.3.8 Internationalization

Clients may optionally indicate to a Web server what language they would prefer the
response be given in. This information can be communicated from the client using
the Accept-Language header along with other mechanisms described in the HTTP/
1.1 specification. The following methods are provided in the ServletRequest
interface to determine the preferred locale of the sender:

Table 3: Protocol Attributes

Attribute Attribute Name Java Type

cipher suite javax.servlet.request.cipher_suite String

bit size of the algo-
rithm

javax.servlet.request.key_size Integer
nal Version

Request data encoding 31
• getLocale

• getLocales

The getLocale method will return the preferred locale for which the client
wants to accept content. See section 14.4 of RFC 2616 (HTTP/1.1) for more
information about how the Accept-Language header must be interpreted to
determine the preferred language of the client.

The getLocales method will return an Enumeration of Locale objects
indicating, in decreasing order starting with the preferred locale, the locales that
are acceptable to the client.

If no preferred locale is specified by the client, the locale returned by the
getLocale method must be the default locale for the servlet container and the
getLocales method must contain an enumeration of a single Locale element of
the default locale.

SRV.3.9 Request data encoding

Currently, many browsers do not send a char encoding qualifier with the Content-
Type header, leaving open the determination of the character encoding for reading
HTTP requests. The default encoding of a request the container uses to create the
request reader and parse POST data must be “ISO-8859-1” if none has been
specified by the client request. However, in order to indicate to the developer in this
case the failure of the client to send a character encoding, the container returns null
from the getCharacterEncoding method.

If the client hasn’t set character encoding and the request data is encoded with
a different encoding than the default as described above, breakage can occur. To
remedy this situation, a new method setCharacterEncoding(String enc) has
been added to the ServletRequest interface. Developers can override the
character encoding supplied by the container by calling this method. It must be
called prior to parsing any post data or reading any input from the request. Calling
this method once data has been read will not affect the encoding.

SRV.3.10 Lifetime of the Request Object

Each request object is valid only within the scope of a servlet’s service method, or
within the scope of a filter’s doFilter method. Containers commonly recycle
request objects in order to avoid the performance overhead of request object
creation. The developer must be aware that maintaining references to request objects

THE REQUEST

Fi

32
outside the scope described above is not recommended as it may have indeterminate
results.

nal Version

C H A P T E R SRV.4

Servlet Context

SRV.4.1 Introduction to the ServletContext Interface

The ServletContext interface defines a servlet’s view of the Web application
within which the servlet is running. The Container Provider is responsible for
providing an implementation of the ServletContext interface in the servlet
container. Using the ServletContext object, a servlet can log events, obtain URL
references to resources, and set and store attributes that other servlets in the context
can access.

A ServletContext is rooted at a known path within a Web server. For
example, a servlet context could be located at http://www.mycorp.com/catalog.
All requests that begin with the /catalog request path, known as the context path,
are routed to the Web application associated with the ServletContext.

SRV.4.2 Scope of a ServletContext Interface

There is one instance object of the ServletContext interface associated with each
Web application deployed into a container. In cases where the container is
distributed over many virtual machines, a Web application will have an instance of
the ServletContext for each JVM.

Servlets in a container that were not deployed as part of a Web application are
implicitly part of a “default” Web application and have a default ServletContext.
In a distributed container, the default ServletContext is non-distributable and
must only exist in one JVM.
33

SERVLET CONTEXT

Fi

34
SRV.4.3 Initialization Parameters

The following methods of the ServletContext interface allow the servlet access to
context initialization parameters associated with a Web application as specified by
the Application Developer in the deployment descriptor:

• getInitParameter

• getInitParameterNames

Initialization parameters are used by an Application Developer to convey
setup information. Typical examples are a Webmaster’s e-mail address, or the
name of a system that holds critical data.

SRV.4.4 Context Attributes

A servlet can bind an object attribute into the context by name. Any attribute bound
into a context is available to any other servlet that is part of the same Web
application. The following methods of ServletContext interface allow access to
this functionality:

• setAttribute

• getAttribute

• getAttributeNames

• removeAttribute

SRV.4.4.1 Context Attributes in a Distributed Container

Context attributes are local to the JVM in which they were created. This prevents
ServletContext attributes from being a shared memory store in a distributed
container. When information needs to be shared between servlets running in a
distributed environment, the information should be placed into a session (See
Chapter SRV.7, “Sessions”), stored in a database, or set in an Enterprise
JavaBeansTM component.
nal Version

Resources 35
SRV.4.5 Resources

The ServletContext interface provides direct access only to the hierarchy of static
content documents that are part of the Web application, including HTML, GIF, and
JPEG files, via the following methods of the ServletContext interface:

• getResource

• getResourceAsStream

The getResource and getResourceAsStream methods take a String with a
leading “/” as an argument that gives the path of the resource relative to the root of
the context. This hierarchy of documents may exist in the server’s file system, in a
Web application archive file, on a remote server, or at some other location.

These methods are not used to obtain dynamic content. For example, in a
container supporting the JavaServer PagesTM specification1, a method call of the
form getResource("/index.jsp") would return the JSP source code and not the
processed output. See Chapter SRV.8, “Dispatching Requests” for more
information about accessing dynamic content.

The full listing of the resources in the Web application can be accessed using
the getResourcePaths(String path) method. The full details on the semantics of
this method may be found in the API documentation in this specification.

SRV.4.6 Multiple Hosts and Servlet Contexts

Web servers may support multiple logical hosts sharing one IP address on a server.
This capability is sometimes referred to as "virtual hosting". In this case, each
logical host must have its own servlet context or set of servlet contexts. Servlet
contexts can not be shared across virtual hosts.

SRV.4.7 Reloading Considerations

Although a Container Provider implementation of a class reloading scheme for ease
of development is not required, any such implementation must ensure that all
servlets, and classes that they may use2, are loaded in the scope of a single class
loader. This requirement is needed to guarantee that the application will behave as

1. The JavaServer PagesTM specification can be found at http://

java.sun.com/products/jsp

SERVLET CONTEXT

Fi

36
expected by the Developer. As a development aid, the full semantics of notification
to session binding listeners should be supported by containers for use in the
monitoring of session termination upon class reloading.

Previous generations of containers created new class loaders to load a servlet,
distinct from class loaders used to load other servlets or classes used in the servlet
context. This could cause object references within a servlet context to point at
unexpected classes or objects, and cause unexpected behavior. The requirement is
needed to prevent problems caused by demand generation of new class loaders.

SRV.4.7.1 Temporary Working Directories

A temporary storage directory is required for each servlet context. Servlet containers
must provide a private temporary directory for each servlet context, and make it
available via the javax.servlet.context.tempdir context attribute. The objects
associated with the attribute must be of type java.io.File.

The requirement recognizes a common convenience provided in many servlet
engine implementations. The container is not required to maintain the contents of
the temporary directory when the servlet container restarts, but is required to
ensure that the contents of the temporary directory of one servlet context is not
visible to the servlet contexts of other Web applications running on the servlet
container.

2. An exception is system classes that the servlet may use in a different class
loader.
nal Version

C H A P T E R SRV.5

The Response

The response object encapsulates all information to be returned from the server to
the client. In the HTTP protocol, this information is transmitted from the server to
the client either by HTTP headers or the message body of the request.

SRV.5.1 Buffering

A servlet container is allowed, but not required, to buffer output going to the client
for efficiency purposes. Typically servers that do buffering make it the default, but
allow servlets to specify buffering parameters.

The following methods in the ServletResponse interface allow a servlet to
access and set buffering information:

• getBufferSize

• setBufferSize

• isCommitted

• reset

• resetBuffer

• flushBuffer

These methods are provided on the ServletResponse interface to allow
buffering operations to be performed whether the servlet is using a
ServletOutputStream or a Writer.

The getBufferSize method returns the size of the underlying buffer being
used. If no buffering is being used, this method must return the int value of 0
(zero).
37

THE RESPONSE

Fi

38
The servlet can request a preferred buffer size by using the setBufferSize
method. The buffer assigned is not required to be the size requested by the servlet,
but must be at least as large as the size requested. This allows the container to
reuse a set of fixed size buffers, providing a larger buffer than requested if
appropriate. The method must be called before any content is written using a
ServletOutputStream or Writer. If any content has been written or the response
object has been committed, this method must throw an IllegalStateException.

The isCommitted method returns a boolean value indicating whether any
response bytes have been returned to the client. The flushBuffer method forces
content in the buffer to be written to the client.

The reset method clears data in the buffer when the response is not
committed. Headers and status codes set by the servlet prior to the reset call must
be cleared as well. The resetBuffer method clears content in the buffer if the
response is not committed without clearing the headers and status code.

If the response is committed and the reset or resetBuffer method is called,
an IllegalStateException must be thrown. The response and its associated
buffer will be unchanged.

When using a buffer, the container must immediately flush the contents of a
filled buffer to the client. If this is the first data that is sent to the client, the
response is considered to be committed.

SRV.5.2 Headers

A servlet can set headers of an HTTP response via the following methods of the
HttpServletResponse interface:

• setHeader

• addHeader

The setHeader method sets a header with a given name and value. A previous
header is replaced by the new header. Where a set of header values exist for the
name, the values are cleared and replaced with the new value.

The addHeader method adds a header value to the set with a given name. If
there are no headers already associated with the name, a new set is created.

Headers may contain data that represents an int or a Date object. The
following convenience methods of the HttpServletResponse interface allow a
servlet to set a header using the correct formatting for the appropriate data type:
nal Version

Convenience Methods 39
• setIntHeader

• setDateHeader

• addIntHeader

• addDateHeader

To be successfully transmitted back to the client, headers must be set before
the response is committed. Headers set after the response is committed will be
ignored by the servlet container.

Servlet programmers are responsible for ensuring that the Content-Type
header is appropriately set in the response object for the content the servlet is
generating. The HTTP 1.1 specification does not require that this header be set in
an HTTP response. Servlet containers must not set a default content type when the
servlet programmer does not set the type.

It is recommended that containers use the X-Powered-By HTTP header to
publish its implementation information. The field value should consist of one or
more implementation types, such as "Servlet/2.4". Optionally, the
supplementary information of the container and the underlying Java platform can
be added after the implementation type within parentheses. The container should
be configurable to suppress this header.

Here’s the examples of this header.

X-Powered-By: Servlet/2.4

X-Powered-By: Servlet/2.4 JSP/2.0 (Tomcat/5.0 JRE/1.4.1)

SRV.5.3 Convenience Methods

The following convenience methods exist in the HttpServletResponse interface:

• sendRedirect

• sendError

The sendRedirect method will set the appropriate headers and content body
to redirect the client to a different URL. It is legal to call this method with a
relative URL path, however the underlying container must translate the relative
path to a fully qualified URL for transmission back to the client. If a partial URL
is given and, for whatever reason, cannot be converted into a valid URL, then this
method must throw an IllegalArgumentException.

The sendError method will set the appropriate headers and content body for
an error message to return to the client. An optional String argument can be

THE RESPONSE

Fi

40
provided to the sendError method which can be used in the content body of the
error.

These methods will have the side effect of committing the response, if it has
not already been committed, and terminating it. No further output to the client
should be made by the servlet after these methods are called. If data is written to
the response after these methods are called, the data is ignored.

If data has been written to the response buffer, but not returned to the client
(i.e. the response is not committed), the data in the response buffer must be
cleared and replaced with the data set by these methods. If the response is
committed, these methods must throw an IllegalStateException.

SRV.5.4 Internationalization

Servlets should set the locale and the character encoding of a response. The locale is
set using the ServletResponse.setLocale method. The method can be called
repeatedly; but calls made after the response is committed have no effect. If the
servlet does not set the locale before the page is committed, the container’s default
locale is used to determine the response’s locale, but no specification is made for the
communication with a client, such as Content-Language header in the case of
HTTP.

<locale-encoding-mapping-list>

<locale-encoding-mapping>

<locale>ja</locale>

<encoding>Shift_JIS</encoding>

</locale-encoding-mapping>

</locale-encoding-mapping-list>

If the element does not exist or does not provide a mapping, setLocale uses a
container dependent mapping. The setCharacterEncoding, setContentType, and
setLocale methods can be called repeatedly to change the character encoding.
Calls made after the servlet response’s getWriter method has been called or after
the response is committed have no effect on the character encoding. Calls to
setContentType set the character encoding only if the given content type string
provides a value for the charset attribute. Calls to setLocale set the character
encoding only if neither setCharacterEncoding nor setContentType has set the
character encoding before.
nal Version

Closure of Response Object 41
If the servlet does not specify a character encoding before the getWriter
method of the ServletResponse interface is called or the response is committed,
the default ISO-8859-1 is used.

Containers must communicate the locale and the character encoding used for
the servlet response’s writer to the client if the protocol in use provides a way for
doing so. In the case of HTTP, the locale is communicated via the Content-
Language header, the character encoding as part of the Content-Type header for
text media types. Note that the character encoding cannot be communicated via
HTTP headers if the servlet does not specify a content type; however, it is still
used to encode text written via the servlet response’s writer.

SRV.5.5 Closure of Response Object

When a response is closed, the container must immediately flush all remaining
content in the response buffer to the client. The following events indicate that the
servlet has satisfied the request and that the response object is to be closed:

• The termination of the service method of the servlet.

• The amount of content specified in the setContentLength method of the re-
sponse has been greater than zero and has been written to the response.

• The sendError method is called.

• The sendRedirect method is called.

SRV.5.6 Lifetime of the Response Object

Each response object is valid only within the scope of a servlet’s service
method, or within the scope of a filter’s doFilter method. Containers
commonly recycle response objects in order to avoid the performance overhead
of response object creation. The developer must be aware that maintaining
references to response objects outside the scope described above may lead to
non-deterministic behavior.

THE RESPONSE

Fi

42
nal Version

C H A P T E R SRV.6

Filtering

Filters are Java components that allow on the fly transformations of payload and
header information in both the request into a resource and the response from a
resource

This chapter describes the Java Servlet v.2.5 API classes and methods that
provide a lightweight framework for filtering active and static content. It describes
how filters are configured in a Web application, and conventions and semantics for
their implementation.

API documentation for servlet filters is provided in Chapter SRV.15,
“javax.servlet”. The configuration syntax for filters is given by the deployment
descriptor schema in Chapter SRV.13, “Deployment Descriptor”. The reader
should use these sources as references when reading this chapter.

SRV.6.1 What is a filter?

A filter is a reusable piece of code that can transform the content of HTTP requests,
responses, and header information. Filters do not generally create a response or
respond to a request as servlets do, rather they modify or adapt the requests for a
resource, and modify or adapt responses from a resource.

Filters can act on dynamic or static content. For the purposes of this chapter,
dynamic and static content are referred to as Web resources.

Among the types of functionality available to the developer needing to use
filters are the following:

• The accessing of a resource before a request to it is invoked.

• The processing of the request for a resource before it is invoked.
43

FILTERING

Fi

44
• The modification of request headers and data by wrapping the request in cus-
tomized versions of the request object.

• The modification of response headers and response data by providing custom-
ized versions of the response object.

• The interception of an invocation of a resource after its call.

• Actions on a servlet, on groups of servlets, or static content by zero, one, or
more filters in a specifiable order.

SRV.6.1.1 Examples of Filtering Components

• Authentication filters

• Logging and auditing filters

• Image conversion filters

• Data compression filters

• Encryption filters

• Tokenizing filters

• Filters that trigger resource access events

• XSL/T filters that transform XML content

• MIME-type chain filters

• Caching filters

SRV.6.2 Main Concepts

The main concepts of this filtering model are described in this section.
The application developer creates a filter by implementing the

javax.servlet.Filter interface and providing a public constructor taking no
arguments. The class is packaged in the Web Archive along with the static content
and servlets that make up the Web application. A filter is declared using the <fil-
ter> element in the deployment descriptor. A filter or collection of filters can be
configured for invocation by defining <filter-mapping> elements in the
deployment descriptor. This is done by mapping filters to a particular servlet by
the servlet’s logical name, or mapping to a group of servlets and static content
resources by mapping a filter to a URL pattern.
nal Version

Main Concepts 45
SRV.6.2.1 Filter Lifecycle

After deployment of the Web application, and before a request causes the container
to access a Web resource, the container must locate the list of filters that must be
applied to the Web resource as described below. The container must ensure that it
has instantiated a filter of the appropriate class for each filter in the list, and called its
init(FilterConfig config) method. The filter may throw an exception to indicate
that it cannot function properly. If the exception is of type UnavailableException,
the container may examine the isPermanent attribute of the exception and may
choose to retry the filter at some later time.

Only one instance per <filter> declaration in the deployment descriptor is
instantiated per JVM of the container. The container provides the filter config as
declared in the filter’s deployment descriptor, the reference to the ServletContext
for the Web application, and the set of initialization parameters.

When the container receives an incoming request, it takes the first filter
instance in the list and calls its doFilter method, passing in the ServletRequest
and ServletResponse, and a reference to the FilterChain object it will use.

The doFilter method of a filter will typically be implemented following this
or some subset of the following pattern:

Step 1: The method examines the request’s headers.

Step 2: The method may wrap the request object with a customized
implementation of ServletRequest or HttpServletRequest in order to
modify request headers or data.

Step 3: The method may wrap the response object passed in to its doFilter
method with a customized implementation of ServletResponse or
HttpServletResponse to modify response headers or data.

Step 4: The filter may invoke the next entity in the filter chain. The next
entity may be another filter, or if the filter making the invocation is the last
filter configured in the deployment descriptor for this chain, the next entity
is the target Web resource. The invocation of the next entity is effected by
calling the doFilter method on the FilterChain object, and passing in the
request and response with which it was called or passing in wrapped
versions it may have created.

The filter chain’s implementation of the doFilter method, provided by the
container, must locate the next entity in the filter chain and invoke its
doFilter method, passing in the appropriate request and response objects.

Alternatively, the filter chain can block the request by not making the call to
invoke the next entity, leaving the filter responsible for filling out the response

FILTERING

Fi

46
object.

Step 5: After invocation of the next filter in the chain, the filter may
examine response headers.

Step 6: Alternatively, the filter may have thrown an exception to indicate
an error in processing. If the filter throws an UnavailableException during
its doFilter processing, the container must not attempt continued
processing down the filter chain. It may choose to retry the whole chain at
a later time if the exception is not marked permanent.

Step 7: When the last filter in the chain has been invoked, the next entity
accessed is the target servlet or resource at the end of the chain.

Step 8: Before a filter instance can be removed from service by the
container, the container must first call the destroy method on the filter to
enable the filter to release any resources and perform other cleanup
operations.

SRV.6.2.2 Wrapping Requests and Responses

Central to the notion of filtering is the concept of wrapping a request or response in
order that it can override behavior to perform a filtering task. In this model, the
developer not only has the ability to override existing methods on the request and
response objects, but to provide new API suited to a particular filtering task to a
filter or target web resource down the chain. For example, the developer may wish to
extend the response object with higher level output objects that the output stream or
the writer, such as API that allows DOM objects to be written back to the client.

In order to support this style of filter the container must support the following
requirement. When a filter invokes the doFilter method on the container’s filter
chain implementation, the container must ensure that the request and response
object that it passes to the next entity in the filter chain, or to the target web
resource if the filter was the last in the chain, is the same object that was passed
into the doFilter method by the calling filter.

The same requirement of wrapper object identity applies to the calls from a
servlet or a filter to RequestDispatcher.forward or RequestDispatcher.include,
when the caller wraps the request or response objects. In this case, the request and
response objects seen by the called servlet must be the same wrapper objects that
were passed in by the calling servlet or filter.
nal Version

Main Concepts 47
SRV.6.2.3 Filter Environment

A set of initialization parameters can be associated with a filter using the <init-
params> element in the deployment descriptor. The names and values of these
parameters are available to the filter at runtime via the getInitParameter and
getInitParameterNames methods on the filter’s FilterConfig object. Additionally,
the FilterConfig affords access to the ServletContext of the Web application for
the loading of resources, for logging functionality, and for storage of state in the
ServletContext’s attribute list.

SRV.6.2.4 Configuration of Filters in a Web Application

A filter is defined in the deployment descriptor using the <filter> element. In this
element, the programmer declares the following:

• filter-name: used to map the filter to a servlet or URL

• filter-class: used by the container to identify the filter type

• init-params: initialization parameters for a filter

Optionally, the programmer can specify icons, a textual description, and a
display name for tool manipulation. The container must instantiate exactly one
instance of the Java class defining the filter per filter declaration in the deployment
descriptor. Hence, two instances of the same filter class will be instantiated by the
container if the developer makes two filter declarations for the same filter class.

Here is an example of a filter declaration:

<filter>

<filter-name>Image Filter</filter-name>

<filter-class>com.acme.ImageServlet</filter-class>

</filter>

Once a filter has been declared in the deployment descriptor, the assembler
uses the <filter-mapping> element to define servlets and static resources in the
Web application to which the filter is to be applied. Filters can be associated with
a servlet using the <servlet-name> element. For example, the following code
example maps the Image Filter filter to the ImageServlet servlet:

FILTERING

Fi

48
<filter-mapping>

<filter-name>Image Filter</filter-name>

<servlet-name>ImageServlet</servlet-name>

</filter-mapping>

Filters can be associated with groups of servlets and static content using the
<url-pattern> style of filter mapping:

<filter-mapping>

<filter-name>Logging Filter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

Here the Logging Filter is applied to all the servlets and static content pages in
the Web application, because every request URI matches the ‘/*’ URL pattern.

When processing a <filter-mapping> element using the <url-pattern> style,
the container must determine whether the <url-pattern> matches the request
URI using the path mapping rules defined in Chapter SRV.11, “Mapping Requests
to Servlets”.

The order the container uses in building the chain of filters to be applied for a
particular request URI is as follows:

1. First, the <url-pattern> matching filter mappings in the same order that these
elements appear in the deployment descriptor.

2. Next, the <servlet-name> matching filter mappings in the same order that
these elements appear in the deployment descriptor.

If a filter mapping contains both <servlet-name> and <url-pattern>, the
container must expand the filter mapping into multiple filter mappings (one for
each <servlet-name> and <url-pattern>), preserving the order of the <servlet-
name> and <url-pattern> elements. For example, the following filter mapping:

<filter-mapping>
<filter-name>Multipe Mappings Filter</filter-name>
<url-pattern>/foo/*</url-pattern>
<servlet-name>Servlet1</servlet-name>
<servlet-name>Servlet2</servlet-name>
<url-pattern>/bar/*</url-pattern>

</filter-mapping>
nal Version

Main Concepts 49
is equivalent to:

<filter-mapping>
<filter-name>Multipe Mappings Filter</filter-name>
<url-pattern>/foo/*</url-pattern>

</filter-mapping>

<filter-mapping>
<filter-name>Multipe Mappings Filter</filter-name>
<servlet-name>Servlet1</servlet-name>

</filter-mapping>

<filter-mapping>
<filter-name>Multipe Mappings Filter</filter-name>
<servlet-name>Servlet2</servlet-name>

</filter-mapping>

<filter-mapping>
<filter-name>Multipe Mappings Filter</filter-name>
<url-pattern>/bar/*</url-pattern>

</filter-mapping>

The requirement about the order of the filter chain means that the container,
when receiving an incoming request, processes the request as follows:

• Identifies the target Web resource according to the rules of “Specification of
Mappings” on page 82.

• If there are filters matched by servlet name and the Web resource has a
<servlet-name>, the container builds the chain of filters matching in the order
declared in the deployment descriptor. The last filter in this chain corresponds
to the last <servlet-name> matching filter and is the filter that invokes the tar-
get Web resource.

• If there are filters using <url-pattern> matching and the <url-pattern>
matches the request URI according to the rules of Section SRV.11.2, “Specifi-
cation of Mappings”, the container builds the chain of <url-pattern> matched
filters in the same order as declared in the deployment descriptor. The last filter
in this chain is the last <url-pattern> matching filter in the deployment de-
scriptor for this request URI. The last filter in this chain is the filter that invokes
the first filter in the <servlet-name> matching chain, or invokes the target Web
resource if there are none.

FILTERING

Fi

50
It is expected that high performance Web containers will cache filter chains so
that they do not need to compute them on a per-request basis.

SRV.6.2.5 Filters and the RequestDispatcher

New since version 2.4 of the Java Servlet specification is the ability to configure
filters to be invoked under request dispatcher forward() and include() calls.

By using the new <dispatcher> element in the deployment descriptor, the
developer can indicate for a filter-mapping whether he would like the filter to be
applied to requests when:

1. The request comes directly from the client.

This is indicated by a <dispatcher> element with value REQUEST,
or by the absence of any <dispatcher> elements.

2. The request is being processed under a request dispatcher representing the Web
component matching the <url-pattern> or <servlet-name> using a for-
ward() call.

This is indicated by a <dispatcher> element with value FORWARD.
3. The request is being processed under a request dispatcher representing the Web

component matching the <url-pattern> or <servlet-name> using an in-
clude() call.

This is indicated by a <dispatcher> element with value INCLUDE.
4. The request is being processed with the error page mechanism specified in “Er-

ror Handling” on page 69 to an error resource matching the <url-pattern>.

This is indicated by a <dispatcher> element with the value ERROR.
5. Or any combination of 1, 2, 3, or 4 above.

For example:
nal Version

Main Concepts 51
<filter-mapping>

<filter-name>Logging Filter</filter-name>

<url-pattern>/products/*</url-pattern>

</filter-mapping>

would result in the Logging Filter being invoked by client requests starting /
products/... but not underneath a request dispatcher call where the request
dispatcher has path commencing /products/.... The following code:

<filter-mapping>

<filter-name>Logging Filter</filter-name>

<servlet-name>ProductServlet</servlet-name>

<dispatcher>INCLUDE</dispatcher>

</filter-mapping>

would result in the Logging Filter not being invoked by client requests to the
ProductServlet, nor underneath a request dispatcher forward() call to the Prod-
uctServlet, but would be invoked underneath a request dispatcher include() call
where the request dispatcher has a name commencing ProductServlet. The
following code:

<filter-mapping>

<filter-name>Logging Filter</filter-name>

<url-pattern>/products/*</url-pattern>

<dispatcher>FORWARD</dispatcher>

<dispatcher>REQUEST</dispatcher>

</filter-mapping>

would result in the Logging Filter being invoked by client requests starting /
products/... and underneath a request dispatcher forward() call where the
request dispatcher has path commencing /products/....

Finally, the following code uses the special servlet name ‘*’:

<filter-mapping>
<filter-name>All Dispatch Filter</filter-name>
<servlet-name>*</servlet-name>
<dispatcher>FORWARD</dispatcher>
</filter-mapping>
This code would result in the All Dispatch Filter being invoked on request

dispatcher forward() calls for all request dispatchers obtained by name or by path.

FILTERING

Fi

52
nal Version

C H A P T E R SRV.7

Sessions

The Hypertext Transfer Protocol (HTTP) is by design a stateless protocol. To build
effective Web applications, it is imperative that requests from a particular client be
associated with each other. Many strategies for session tracking have evolved over
time, but all are difficult or troublesome for the programmer to use directly.

This specification defines a simple HttpSession interface that allows a servlet
container to use any of several approaches to track a user’s session without
involving the Application Developer in the nuances of any one approach.

SRV.7.1 Session Tracking Mechanisms

The following sections describe approaches to tracking a user’s sessions

SRV.7.1.1 Cookies

Session tracking through HTTP cookies is the most used session tracking
mechanism and is required to be supported by all servlet containers.

The container sends a cookie to the client. The client will then return the
cookie on each subsequent request to the server, unambiguously associating the
request with a session. The name of the session tracking cookie must be
JSESSIONID.

SRV.7.1.2 SSL Sessions

Secure Sockets Layer, the encryption technology used in the HTTPS protocol, has a
built-in mechanism allowing multiple requests from a client to be unambiguously
identified as being part of a session. A servlet container can easily use this data to
define a session.
53

SESSIONS

Fi

54
SRV.7.1.3 URL Rewriting

URL rewriting is the lowest common denominator of session tracking. When a
client will not accept a cookie, URL rewriting may be used by the server as the basis
for session tracking. URL rewriting involves adding data, a session ID, to the URL
path that is interpreted by the container to associate the request with a session.

The session ID must be encoded as a path parameter in the URL string. The
name of the parameter must be jsessionid. Here is an example of a URL
containing encoded path information:

http://www.myserver.com/catalog/index.html;jsessionid=1234

SRV.7.1.4 Session Integrity

Web containers must be able to support the HTTP session while servicing HTTP
requests from clients that do not support the use of cookies. To fulfill this
requirement, Web containers commonly support the URL rewriting mechanism.

SRV.7.2 Creating a Session

A session is considered “new” when it is only a prospective session and has not been
established. Because HTTP is a request-response based protocol, an HTTP session
is considered to be new until a client “joins” it. A client joins a session when session
tracking information has been returned to the server indicating that a session has
been established. Until the client joins a session, it cannot be assumed that the next
request from the client will be recognized as part of a session.

The session is considered to be “new” if either of the following is true:

• The client does not yet know about the session
The client does not yet know about the session• The client chooses not to join a session.

These conditions define the situation where the servlet container has no
mechanism by which to associate a request with a previous request.

A Servlet Developer must design his application to handle a situation where a
client has not, can not, or will not join a session.

SRV.7.3 Session Scope

HttpSession objects must be scoped at the application (or servlet context) level.
The underlying mechanism, such as the cookie used to establish the session, can be
nal Version

Binding Attributes into a Session 55
the same for different contexts, but the object referenced, including the attributes in
that object, must never be shared between contexts by the container.

To illustrate this requirement with an example: if a servlet uses the
RequestDispatcher to call a servlet in another Web application, any sessions
created for and visible to the servlet being called must be different from those
visible to the calling servlet.

Additionally, sessions of a context must be resumable by requests into that
context regardless of whether their associated context was being accessed directly
or as the target of a request dispatch at the time the sessions were created.

SRV.7.4 Binding Attributes into a Session

A servlet can bind an object attribute into an HttpSession implementation by name.
Any object bound into a session is available to any other servlet that belongs to the
same ServletContext and handles a request identified as being a part of the same
session.

Some objects may require notification when they are placed into, or removed
from, a session. This information can be obtained by having the object implement
the HttpSessionBindingListener interface. This interface defines the following
methods that will signal an object being bound into, or being unbound from, a
session.

• valueBound

• valueUnbound

The valueBound method must be called before the object is made available via
the getAttribute method of the HttpSession interface. The valueUnbound
method must be called after the object is no longer available via the getAttribute
method of the HttpSession interface.

SRV.7.5 Session Timeouts

In the HTTP protocol, there is no explicit termination signal when a client is no
longer active. This means that the only mechanism that can be used to indicate when
a client is no longer active is a timeout period.

The default timeout period for sessions is defined by the servlet container and
can be obtained via the getMaxInactiveInterval method of the HttpSession
interface. This timeout can be changed by the Developer using the
setMaxInactiveInterval method of the HttpSession interface. The timeout

SESSIONS

Fi

56
periods used by these methods are defined in seconds. By definition, if the timeout
period for a session is set to -1, the session will never expire. The session
invalidation will not take effect until all servlets using that session have exited the
service method. Once the session invalidation is initiated, a new request must not
be able to see that session.

SRV.7.6 Last Accessed Times

The getLastAccessedTime method of the HttpSession interface allows a servlet to
determine the last time the session was accessed before the current request. The
session is considered to be accessed when a request that is part of the session is first
handled by the servlet container.

SRV.7.7 Important Session Semantics

SRV.7.7.1 Threading Issues

Multiple servlets executing request threads may have active access to the same ses-
sion object at the same time. The container must ensure that manipulation of internal
data structures representing the session attributes is performed in a thread safe man-
ner. The Developer has the responsibility for thread safe access to the attribute
objects themselves. This will protect the attribute collection inside the HttpSes-
sion object from concurrent access, eliminating the opportunity for an application
to cause that collection to become corrupted.

SRV.7.7.2 Distributed Environments

Within an application marked as distributable, all requests that are part of a session
must be handled by one JVM at a time. The container must be able to handle all
objects placed into instances of the HttpSession class using the setAttribute or
putValue methods appropriately. The following restrictions are imposed to meet
these conditions:

• The container must accept objects that implement the Serializable interface.

• The container may choose to support storage of other designated objects in
the HttpSession, such as references to Enterprise JavaBeans components and
transactions.

• Migration of sessions will be handled by container-specific facilities.
nal Version

Important Session Semantics 57
The distributed servlet container must throw an IllegalArgumentException
for objects where the container cannot support the mechanism necessary for
migration of the session storing them.

The distributed servlet container must support the mechanism necessary for
migrating objects that implement Serializable.

These restrictions mean that the Developer is ensured that there are no
additional concurrency issues beyond those encountered in a non-distributed
container.

The Container Provider can ensure scalability and quality of service features
like load-balancing and failover by having the ability to move a session object,
and its contents, from any active node of the distributed system to a different node
of the system.

If distributed containers persist or migrate sessions to provide quality of
service features, they are not restricted to using the native JVM Serialization
mechanism for serializing HttpSessions and their attributes. Developers are not
guaranteed that containers will call readObject and writeObject methods on
session attributes if they implement them, but are guaranteed that the
Serializable closure of their attributes will be preserved.

Containers must notify any session attributes implementing the
HttpSessionActivationListener during migration of a session. They must notify
listeners of passivation prior to serialization of a session, and of activation after
deserialization of a session.

Application Developers writing distributed applications should be aware that
since the container may run in more than one Java virtual machine, the developer
cannot depend on static variables for storing an application state. They should
store such states using an enterprise bean or a database.

SRV.7.7.3 Client Semantics

Due to the fact that cookies or SSL certificates are typically controlled by the Web
browser process and are not associated with any particular window of the browser,
requests from all windows of a client application to a servlet container might be part
of the same session. For maximum portability, the Developer should always assume
that all windows of a client are participating in the same session.

SESSIONS

Fi

58
nal Version

C H A P T E R SRV.8

Dispatching Requests

When building a Web application, it is often useful to forward processing of a
request to another servlet, or to include the output of another servlet in the response.
The RequestDispatcher interface provides a mechanism to accomplish this.

SRV.8.1 Obtaining a RequestDispatcher

An object implementing the RequestDispatcher interface may be obtained from the
ServletContext via the following methods:

• getRequestDispatcher

• getNamedDispatcher

The getRequestDispatcher method takes a String argument describing a
path within the scope of the ServletContext. This path must be relative to the root
of the ServletContext and begin with a ‘/’. The method uses the path to look up
a servlet, using the servlet path matching rules in Chapter SRV.11, “Mapping
Requests to Servlets”, wraps it with a RequestDispatcher object, and returns the
resulting object. If no servlet can be resolved based on the given path, a
RequestDispatcher is provided that returns the content for that path.

The getNamedDispatcher method takes a String argument indicating the
name of a servlet known to the ServletContext. If a servlet is found, it is wrapped
with a RequestDispatcher object and the object is returned. If no servlet is
associated with the given name, the method must return null.

To allow RequestDispatcher objects to be obtained using relative paths that
are relative to the path of the current request (not relative to the root of the
ServletContext), the getRequestDispatcher method is provided in the
ServletRequest interface.
59

DISPATCHING REQUESTS

Fi

60
The behavior of this method is similar to the method of the same name in the
ServletContext. The servlet container uses information in the request object to
transform the given relative path against the current servlet to a complete path. For
example, in a context rooted at ’/’ and a request to /garden/tools.html, a request
dispatcher obtained via ServletRequest.getRequestDispatcher("header.html")
will behave exactly like a call to

ServletContext.getRequestDispatcher("/garden/header.html").

SRV.8.1.1 Query Strings in Request Dispatcher Paths

The ServletContext and ServletRequest methods that create RequestDispatcher
objects using path information allow the optional attachment of query string
information to the path. For example, a Developer may obtain a RequestDispatcher
by using the following code:

String path = “/raisins.jsp?orderno=5”;

RequestDispatcher rd = context.getRequestDispatcher(path);

rd.include(request, response);

Parameters specified in the query string used to create the RequestDispatcher
take precedence over other parameters of the same name passed to the included
servlet. The parameters associated with a RequestDispatcher are scoped to apply
only for the duration of the include or forward call.

SRV.8.2 Using a Request Dispatcher

To use a request dispatcher, a servlet calls either the include method or forward
method of the RequestDispatcher interface. The parameters to these methods can
be either the request and response arguments that were passed in via the service
method of the javax.servlet interface, or instances of subclasses of the request and
response wrapper classes that were introduced for version 2.3 of the specification. In
the latter case, the wrapper instances must wrap the request or response objects that
the container passed into the service method.

The Container Provider should ensure that the dispatch of the request to a
target servlet occurs in the same thread of the same JVM as the original request.
nal Version

The Include Method 61
SRV.8.3 The Include Method

The include method of the RequestDispatcher interface may be called at any time.
The target servlet of the include method has access to all aspects of the request
object, but its use of the response object is more limited.

It can only write information to the ServletOutputStream or Writer of the
response object and commit a response by writing content past the end of the
response buffer, or by explicitly calling the flushBuffer method of the
ServletResponse interface. It cannot set headers or call any method that affects
the headers of the response, with the exception of the HttpServletRe-
quest.getSession() and HttpServletRequest.getSession(boolean)
methods. Any attempt to set the headers must be ignored, and any call to HttpS-
ervletRequest.getSession() or HttpServletRequest.getSes-
sion(boolean) that would require adding a Cookie response header must throw
an IllegalStateException if the response has been committed.

SRV.8.3.1 Included Request Parameters

Except for servlets obtained by using the getNamedDispatcher method, a servlet
that has been invoked by another servlet using the include method of
RequestDispatcher has access to the path by which it was invoked.

The following request attributes must be set:

javax.servlet.include.request_uri

javax.servlet.include.context_path

javax.servlet.include.servlet_path

javax.servlet.include.path_info

javax.servlet.include.query_string

These attributes are accessible from the included servlet via the getAttribute
method on the request object and their values must be equal to the request URI,
context path, servlet path, path info, and query string of the included servlet,
respectively. If the request is subsequently included, these attributes are replaced
for that include.

If the included servlet was obtained by using the getNamedDispatcher
method, these attributes must not be set.

DISPATCHING REQUESTS

Fi

62
SRV.8.4 The Forward Method

The forward method of the RequestDispatcher interface may be called by the
calling servlet only when no output has been committed to the client. If output data
exists in the response buffer that has not been committed, the content must be
cleared before the target servlet’s service method is called. If the response has been
committed, an IllegalStateException must be thrown.

The path elements of the request object exposed to the target servlet must
reflect the path used to obtain the RequestDispatcher.

The only exception to this is if the RequestDispatcher was obtained via the
getNamedDispatcher method. In this case, the path elements of the request object
must reflect those of the original request.

Before the forward method of the RequestDispatcher interface returns without
exception, the response content must be sent and committed, and closed by the serv-
let container. If an error occurs in the target of the RequestDispatcher.forward() the
exception may be propogated back through all the calling filters and servlets and
eventually back to the container

SRV.8.4.1 Query String

The request dispatching mechanism is responsible for aggregating query string
parameters when forwarding or including requests.

SRV.8.4.2 Forwarded Request Parameters

Except for servlets obtained by using the getNamedDispatcher method, a servlet
that has been invoked by another servlet using the forward method of
RequestDispatcher has access to the path of the original request.

The following request attributes must be set:

javax.servlet.forward.request_uri

javax.servlet.forward.context_path

javax.servlet.forward.servlet_path

javax.servlet.forward.path_info

javax.servlet.forward.query_string

The values of these attributes must be equal to the return values of the
HttpServletRequest methods getRequestURI, getContextPath, getServletPath,
getPathInfo, getQueryString respectively, invoked on the request object passed
to the first servlet object in the call chain that received the request from the client.
nal Version

Error Handling 63
These attributes are accessible from the forwarded servlet via the
getAttribute method on the request object. Note that these attributes must
always reflect the information in the original request even under the situation that
multiple forwards and subsequent includes are called.

If the forwarded servlet was obtained by using the getNamedDispatcher
method, these attributes must not be set.

SRV.8.5 Error Handling

If the servlet that is the target of a request dispatcher throws a runtime exception or a
checked exception of type ServletException or IOException, it should be
propagated to the calling servlet. All other exceptions should be wrapped as
ServletExceptions and the root cause of the exception set to the original exception,
as it should not be propagated.

C H A P T E R SRV.9

Web Applications

A Web application is a collection of servlets, HTML pages, classes, and other
resources that make up a complete application on a Web server. The Web
application can be bundled and run on multiple containers from multiple vendors.

SRV.9.1 Web Applications Within Web Servers

A Web application is rooted at a specific path within a Web server. For example, a
catalog application could be located at http://www.mycorp.com/catalog. All
requests that start with this prefix will be routed to the ServletContext which
represents the catalog application.

A servlet container can establish rules for automatic generation of Web
applications. For example a ~user/ mapping could be used to map to a Web
application based at /home/user/public_html/.

By default, an instance of a Web application must run on one VM at any one
time. This behavior can be overridden if the application is marked as
“distributable” via its deployment descriptor. An application marked as
distributable must obey a more restrictive set of rules than is required of a normal
Web application. These rules are set out throughout this specification.

SRV.9.2 Relationship to ServletContext

The servlet container must enforce a one to one correspondence between a Web
application and a ServletContext. A ServletContext object provides a servlet
with its view of the application.
64

Elements of a Web Application 65
SRV.9.3 Elements of a Web Application

A Web application may consist of the following items:

• Servlets

• JSPTM Pages1

• Utility Classes

• Static documents (HTML, images, sounds, etc.)

• Client side Java applets, beans, and classes

• Descriptive meta information that ties all of the above elements together

SRV.9.4 Deployment Hierarchies

This specification defines a hierarchical structure used for deployment and
packaging purposes that can exist in an open file system, in an archive file, or in
some other form. It is recommended, but not required, that servlet containers
support this structure as a runtime representation.

SRV.9.5 Directory Structure

A Web application exists as a structured hierarchy of directories. The root of this
hierarchy serves as the document root for files that are part of the application. For
example, for a Web application with the context path /catalog in a Web container,
the index.html file at the base of the Web application hierarchy can be served to
satisfy a request from /catalog/index.html. The rules for matching URLs to
context path are laid out in Chapter SRV.11, “Mapping Requests to Servlets”. Since
the context path of an application determines the URL namespace of the contents of
the Web application, Web containers must reject Web applications defining a
context path that could cause potential conflicts in this URL namespace. This may
occur, for example, by attempting to deploy a second Web application with the same
context path. Since requests are matched to resources in a case-sensitive manner,
this determination of potential conflict must be performed in a case-sensitive
manner as well.

1. See the JavaServer Pages specification available from http://

java.sun.com/products/jsp.

WEB APPLICATIONS

Fi

66
A special directory exists within the application hierarchy named “WEB-INF”.
This directory contains all things related to the application that aren’t in the
document root of the application. The WEB-INF node is not part of the public
document tree of the application. No file contained in the WEB-INF directory may
be served directly to a client by the container. However, the contents of the WEB-
INF directory are visible to servlet code using the getResource and getResource-
AsStream method calls on the ServletContext, and may be exposed using the
RequestDispatcher calls. Hence, if the Application Developer needs access, from
servlet code, to application specific configuration information that he does not
wish to be exposed directly to the Web client, he may place it under this directory.
Since requests are matched to resource mappings in a case-sensitive manner,
client requests for ‘/WEB-INF/foo’, ‘/WEb-iNf/foo’, for example, should not result
in contents of the Web application located under /WEB-INF being returned, nor
any form of directory listing thereof.

The contents of the WEB-INF directory are:

• The /WEB-INF/web.xml deployment descriptor.

• The /WEB-INF/classes/ directory for servlet and utility classes. The classes in
this directory must be available to the application class loader.

• The /WEB-INF/lib/*.jar area for Java ARchive files. These files contain serv-
lets, beans, and other utility classes useful to the Web application. The Web ap-
plication class loader must be able to load classes from any of these archive
files.

The Web application class loader must load classes from the WEB-INF/ classes
directory first, and then from library JARs in the WEB-INF/lib directory. Also, any
requests from the client to access the resources in WEB-INF/ directory must be
returned with a SC_NOT_FOUND(404) response.

SRV.9.5.1 Example of Application Directory Structure

The following is a listing of all the files in a sample Web application:

/index.html

/howto.jsp

/feedback.jsp

/images/banner.gif

/images/jumping.gif

/WEB-INF/web.xml

/WEB-INF/lib/jspbean.jar
nal Version

Web Application Archive File 67
/WEB-INF/classes/com/mycorp/servlets/MyServlet.class

/WEB-INF/classes/com/mycorp/util/MyUtils.class

SRV.9.6 Web Application Archive File

Web applications can be packaged and signed into a Web ARchive format (WAR)
file using the standard Java archive tools. For example, an application for issue
tracking might be distributed in an archive file called issuetrack.war.

When packaged into such a form, a META-INF directory will be present which
contains information useful to Java archive tools. This directory must not be
directly served as content by the container in response to a Web client’s request,
though its contents are visible to servlet code via the getResource and getResour-
ceAsStream calls on the ServletContext. Also, any requests to access the
resources in META-INF directory must be returned with a SC_NOT_FOUND(404)
response.

SRV.9.7 Web Application Deployment Descriptor

The Web application deployment descriptor (see Chapter SRV.13, “Deployment
Descriptor””) includes the following types of configuration and deployment
information:

• ServletContext Init Parameters

• Session Configuration

• Servlet/JSP Definitions

• Servlet/JSP Mappings

• MIME Type Mappings

• Welcome File list

• Error Pages

• Security

SRV.9.7.1 Dependencies On Extensions

When a number of applications make use of the same code or resources, they will
typically be installed as library files in the container. These files are often common
or standard APIs that can be used without sacrificing portability. Files used only by
one or a few applications will be made available for access as part of the Web

WEB APPLICATIONS

Fi

68
application. The container must provide a directory for these libraries. The files
placed within this directory must be available across all Web applications. The
location of this directory is container-specific. The class loader the servlet container
uses for loading these library files must be the same for all Web applications within
the same JVM. This class loader instance must be somewhere in the chain of parent
class loaders of the Web application class loader.

Application developers need to know what extensions are installed on a Web
container, and containers need to know what dependencies servlets in a WAR have
on such libraries in order to preserve portability.

The application developer depending on such an extension or extensions must
provide a META-INF/MANIFEST.MF entry in the WAR file listing all extensions
needed by the WAR. The format of the manifest entry should follow standard JAR
manifest format. During deployment of the Web application, the Web container
must make the correct versions of the extensions available to the application
following the rules defined by the Optional Package Versioning mechanism (http:/
/java.sun.com/j2se/1.4/docs/guide/extensions/).

Web containers must also be able to recognize declared dependencies
expressed in the manifest entry of any of the library JARs under the WEB-INF/lib
entry in a WAR.

If a Web container is not able to satisfy the dependencies declared in this
manner, it should reject the application with an informative error message.

SRV.9.7.2 Web Application Class Loader

The class loader that a container uses to load a servlet in a WAR must allow the
developer to load any resources contained in library JARs within the WAR
following normal J2SE semantics using getResource. As described in the Java EE
license agreement, servlet containers that are not part of a Java EEproduct should
not allow the application to override Java SE platform classes, such as those in the
java.* and javax.* namespaces, that Java SE does not allow to be modified. The
container should not allow applications to override or access the container’s
implementation classes. It is recommended also that the application class loader be
implemented so that classes and resources packaged within the WAR are loaded in
preference to classes and resources residing in container-wide library JARs.
nal Version

Replacing a Web Application 69
SRV.9.8 Replacing a Web Application

A server should be able to replace an application with a new version without
restarting the container. When an application is replaced, the container should
provide a robust method for preserving session data within that application.

SRV.9.9 Error Handling

SRV.9.9.1 Request Attributes

A Web application must be able to specify that when errors occur, other resources in
the application are used to provide the content body of the error response. The
specification of these resources is done in the deployment descriptor.

If the location of the error handler is a servlet or a JSP page:

• The original unwrapped request and response objects created by the container
are passed to the servlet or JSP page.

• The request path and attributes are set as if a RequestDispatcher.forward to
the error resource had been performed.

• The request attributes in Table SRV.9-1 must be set.

These attributes allow the servlet to generate specialized content depending
on the status code, the exception type, the error message, the exception object
propagated, and the URI of the request processed by the servlet in which the error
occurred (as determined by the getRequestURI call), and the logical name of the
servlet in which the error occurred.

Table SRV.9-1 Request Attributes and their types

Request Attributes Type

javax.servlet.error.status_code java.lang.Integer

javax.servlet.error.exception_type java.lang.Class

javax.servlet.error.message java.lang.String

javax.servlet.error.exception java.lang.Throwable

javax.servlet.error.request_uri java.lang.String

javax.servlet.error.servlet_name java.lang.String

WEB APPLICATIONS

Fi

70
With the introduction of the exception object to the attributes list for version
2.3 of this specification, the exception type and error message attributes are
redundant. They are retained for backwards compatibility with earlier versions of
the API.

SRV.9.9.2 Error Pages

To allow developers to customize the appearance of content returned to a Web client
when a servlet generates an error, the deployment descriptor defines a list of error
page descriptions. The syntax allows the configuration of resources to be returned
by the container either when a servlet or filter calls sendError on the response for
specific status codes, or if the servlet generates an exception or error that propagates
to the container.

If the sendError method is called on the response, the container consults the
list of error page declarations for the Web application that use the status-code
syntax and attempts a match. If there is a match, the container returns the resource
as indicated by the location entry.

A servlet or filter may throw the following exceptions during processing of a
request:

• runtime exceptions or errors

• ServletExceptions or subclasses thereof

• IOExceptions or subclasses thereof

The Web application may have declared error pages using the exception-
type element. In this case the container matches the exception type by comparing
the exception thrown with the list of error-page definitions that use the
exception-type element. A match results in the container returning the resource
indicated in the location entry. The closest match in the class hierarchy wins.

If no error-page declaration containing an exception-type fits using the
class-hierarchy match, and the exception thrown is a ServletException or
subclass thereof, the container extracts the wrapped exception, as defined by the
ServletException.getRootCause method. A second pass is made over the error
page declarations, again attempting the match against the error page declarations,
but using the wrapped exception instead.

Error-page declarations using the exception-type element in the deployment
descriptor must be unique up to the class name of the exception-type. Similarly,
error-page declarations using the status-code element must be unique in the
deployment descriptor up to the status code.
nal Version

Welcome Files 71
The error page mechanism described does not intervene when errors occur
when invoked using the RequestDispatcher or filter.doFilter method. In this
way, a filter or servlet using the RequestDispatcher has the opportunity to handle
errors generated.

If a servlet generates an error that is not handled by the error page mechanism
as described above, the container must ensure to send a response with status 500.

The default servlet and container will use the sendError method to send 4xx
and 5xx status responses, so that the error mechanism may be invoked. The
default servlet and container will use the setStatus method for 2xx and 3xx
responses and will not invoke the error page mechanism.

SRV.9.9.3 Error Filters

The error page mechanism operates on the original unwrapped/unfiltered request
and response objects created by the container. The mechanism described in
Section SRV.6.2.5, “Filters and the RequestDispatcher” may be used to specify
filters that are applied before an error response is generated.

SRV.9.10 Welcome Files

Web Application developers can define an ordered list of partial URIs called
welcome files in the Web application deployment descriptor. The deployment
descriptor syntax for the list is described in the Web application deployment
descriptor schema.

The purpose of this mechanism is to allow the deployer to specify an ordered
list of partial URIs for the container to use for appending to URIs when there is a
request for a URI that corresponds to a directory entry in the WAR not mapped to
a Web component. This kind of request is known as a valid partial request.

The use for this facility is made clear by the following common example: A
welcome file of ‘index.html’ can be defined so that a request to a URL like
host:port/webapp/directory/, where ‘directory’ is an entry in the WAR that is
not mapped to a servlet or JSP page, is returned to the client as ‘host:port/
webapp/directory/index.html’.

If a Web container receives a valid partial request, the Web container must
examine the welcome file list defined in the deployment descriptor. The welcome
file list is an ordered list of partial URLs with no trailing or leading /. The Web
server must append each welcome file in the order specified in the deployment
descriptor to the partial request and check whether a static resource or servlet in
the WAR is mapped to that request URI. The Web container must send the request

WEB APPLICATIONS

Fi

72
to the first resource in the WAR that matches. The container may send the request
to the welcome resource with a forward, a redirect, or a container specific
mechanism that is indistinguishable from a direct request.

If no matching welcome file is found in the manner described, the container
may handle the request in a manner it finds suitable. For some configurations this
may mean returning a directory listing or for others returning a 404 response.

Consider a Web application where:

• The deployment descriptor lists the following welcome files.

<welcome-file-list>

<welcome-file>index.html</welcome-file>

<welcome-file>default.jsp</welcome-file>

</welcome-file-list>

• The static content in the WAR is as follows

/foo/index.html

/foo/default.jsp

/foo/orderform.html

/foo/home.gif

/catalog/default.jsp

/catalog/products/shop.jsp

/catalog/products/register.jsp

• A request URI of /foo will be redirected to a URI of /foo/.

• A request URI of /foo/ will be returned as /foo/index.html.

• A request URI of /catalog will be redirected to a URI of /catalog/.

• A request URI of /catalog/ will be returned as /catalog/default.jsp.

• A request URI of /catalog/index.html will cause a 404 not found

• A request URI of /catalog/products will be redirected to a URI of /
catalog/products/.

• A request URI of /catalog/products/ will be passed to the “default” servlet,
if any. If no “default” servlet is mapped, the request may cause a 404 not
found, may cause a directory listing including shop.jsp and register.jsp, or
may cause other behavior defined by the container. See Section SRV.11.2,
“Specification of Mappings” for the definition of “default” servlet.
nal Version

Web Application Environment 73
SRV.9.11 Web Application Environment

Servlet containers that are not part of a Java EE technology-compliant
implementation are encouraged, but not required, to implement the application
environment functionality described in Section SRV.14.2.2, “Web Application
Environment and the Java EE specification. If they do not implement the facilities
required to support this environment, upon deploying an application that relies on
them, the container should provide a warning.

SRV.9.12 Web Application Deployment

When a web application is deployed into a container, the following steps must be
performed, in this order, before the web application begins processing client
requests.

• Instantiate an instance of each event listener identified by a <listener> ele-
ment in the deployment descriptor.

• For instantiated listener instances that implement ServletContextListener,
call the contextInitialized() method.

• Instantiate an instance of each filter identified by a <filter> element in the de-
ployment descriptor and call each filter instance’s init() method.

• Instantiate an instance of each servlet identified by a <servlet> element that
includes a <load-on-startup> element in the order defined by the load-on-
startup element values, and call each servlet instance’s init() method.

SRV.9.13 Inclusion of a web.xml Deployment Descriptor

A web application is NOT required to contain a web.xml if it does NOT contain any
Servlet, Filter, or Listener components. In other words an application containing
only static files or JSP pages does not require a web.xml to be present.

WEB APPLICATIONS

Fi

74
nal Version

C H A P T E R SRV.10

Application Lifecycle Events

SRV.10.1 Introduction

The application events facility gives the Web Application Developer greater control
over the lifecycle of the ServletContext and HttpSession and ServletRequest,
allows for better code factorization, and increases efficiency in managing the
resources that the Web application uses.

SRV.10.2 Event Listeners

Application event listeners are classes that implement one or more of the servlet
event listener interfaces. They are instantiated and registered in the Web container at
the time of the deployment of the Web application. They are provided by the
Developer in the WAR.

Servlet event listeners support event notifications for state changes in the
ServletContext, HttpSession and ServletRequest objects. Servlet context
listeners are used to manage resources or state held at a JVM level for the
application. HTTP session listeners are used to manage state or resources
associated with a series of requests made into a Web application from the same
client or user. Servlet request listeners are used to manage state across the
lifecycle of servlet requests.

There may be multiple listener classes listening to each event type, and the
Developer may specify the order in which the container invokes the listener beans
for each event type.
75

APPLICATION LIFECYCLE EVENTS

Fi

76
SRV.10.2.1 Event Types and Listener Interfaces

Events types and the listener interfaces used to monitor them are shown in Table
SRV.10-1:.

Table SRV.10-1 Events and Listener Interfaces

Event Type Description Listener Interface

Servlet Context
Events

Lifecycle The servlet context has
just been created and is
available to service its
first request, or the serv-
let context is about to be
shut down.

javax.servlet.
ServletContextListener

Changes to attributes Attributes on the servlet
context have been
added, removed, or
replaced.

javax.servlet.
ServletContextAttributeListener

HTTP Session
Events

Lifecycle An HttpSession has
been created, invali-
dated, or timed out.

javax.servlet.http.
HttpSessionListener

Changes to attributes Attributes have been
added, removed, or
replaced on an
HttpSession.

javax.servlet.http
HttpSessionAttributeListener

Session migration HttpSession has been
activated or passivated.

javax.servlet.http
HttpSessionActivationListener

Object binding Object has been bound
to or unbound from
Httpsession

javax.servlet.http
HttpSessionBindingListener

Servlet Request
Events
nal Version

Listener Class Configuration 77
For details of the API, refer to the API reference in Chapter SRV.15,
“javax.servlet” and Chapter SRV.16, “javax.servlet.http”.

SRV.10.2.2 An Example of Listener Use

To illustrate a use of the event scheme, consider a simple Web application
containing a number of servlets that make use of a database. The Developer has
provided a servlet context listener class for management of the database connection.

1. When the application starts up, the listener class is notified. The application
logs on to the database, and stores the connection in the servlet context.

2. Servlets in the application access the connection as needed during activity in
the Web application.

3. When the Web server is shut down, or the application is removed from the Web
server, the listener class is notified and the database connection is closed.

SRV.10.3 Listener Class Configuration

SRV.10.3.1 Provision of Listener Classes

The Developer of the Web application provides listener classes implementing one or
more of the listener interfaces in the javax.servlet API. Each listener class must
have a public constructor taking no arguments. The listener classes are packaged
into the WAR, either under the WEB-INF/classes archive entry, or inside a JAR in
the WEB-INF/lib directory.

Lifecycle A servlet request has
started being processed
by Web components.

javax.servlet.
ServletRequestListener

Changes to attributes Attributes have been
added, removed, or
replaced on a
ServletRequest.

javax.servlet.
ServletRequestAttributeListener

Table SRV.10-1 Events and Listener Interfaces

Event Type Description Listener Interface

APPLICATION LIFECYCLE EVENTS

Fi

78
SRV.10.3.2 Deployment Declarations

Listener classes are declared in the Web application deployment descriptor using the
listener element. They are listed by class name in the order in which they are to be
invoked.

SRV.10.3.3 Listener Registration

The Web container creates an instance of each listener class and registers it for event
notifications prior to the processing of the first request by the application. The Web
container registers the listener instances according to the interfaces they implement
and the order in which they appear in the deployment descriptor. During Web
application execution, listeners are invoked in the order of their registration.

SRV.10.3.4 Notifications At Shutdown

On application shutdown, listeners are notified in reverse order to their declarations
with notifications to session listeners preceeding notifications to context listeners.
Session listeners must be notified of session invalidations prior to context listeners
being notified of application shutdown.

SRV.10.4 Deployment Descriptor Example

The following example is the deployment grammar for registering two servlet
context lifecycle listeners and an HttpSession listener.

Suppose that com.acme.MyConnectionManager and com.acme.
MyLoggingModule both implement javax.servlet.ServletContextListener, and
that com.acme.MyLoggingModule additionally implements
javax.servlet.http.HttpSessionListener. Also, the Developer wants
com.acme.MyConnectionManager to be notified of servlet context lifecycle events
before com.acme.MyLoggingModule. Here is the deployment descriptor for this
application:
nal Version

Listener Instances and Threading 79
<web-app>

<display-name>MyListeningApplication</display-name>

<listener>

<listener-class>com.acme.MyConnectionManager</listener-

class>

</listener>

<listener>

<listener-class>com.acme.MyLoggingModule</listener-class>

</listener>

<servlet>

 <display-name>RegistrationServlet</display-name>

 ...etc

</servlet>

</web-app>

SRV.10.5 Listener Instances and Threading

The container is required to complete instantiation of the listener classes in a Web
application prior to the start of execution of the first request into the application. The
container must maintain a reference to each listener instance until the last request is
serviced for the Web application.

Attribute changes to ServletContext and HttpSession objects may occur
concurrently. The container is not required to synchronize the resulting
notifications to attribute listener classes. Listener classes that maintain state are
responsible for the integrity of the data and should handle this case explicitly.

SRV.10.6 Listener Exceptions

Application code inside a listener may throw an exception during operation. Some
listener notifications occur under the call tree of another component in the
application. An example of this is a servlet that sets a session attribute, where the
session listener throws an unhandled exception. The container must allow
unhandled exceptions to be handled by the error page mechanism described in
Section SRV.9.9, “Error Handling”. If there is no error page specified for those
exceptions, the container must ensure to send a response back with status 500. In
this case no more listeners under that event are called.

Some exceptions do not occur under the call stack of another component in
the application. An example of this is a SessionListener that receives a
notification that a session has timed out and throws an unhandled exception, or of
a ServletContextListener that throws an unhandled exception during a

APPLICATION LIFECYCLE EVENTS

Fi

80
notification of servlet context initialization, or of a ServletRequestListener that
throws an unhandled exception during a notification of the initialization or the
destruction of the request object. In this case, the Developer has no opportunity to
handle the exception. The container may respond to all subsequent requests to the
Web application with an HTTP status code 500 to indicate an application error.

Developers wishing normal processing to occur after a listener generates an
exception must handle their own exceptions within the notification methods.

SRV.10.7 Distributed Containers

In distributed Web containers, HttpSession instances are scoped to the particular
JVM servicing session requests, and the ServletContext object is scoped to the
Web container’s JVM. Distributed containers are not required to propagate either
servlet context events or HttpSession events to other JVMs. Listener class instances
are scoped to one per deployment descriptor declaration per JVM.

SRV.10.8 Session Events

Listener classes provide the Developer with a way of tracking sessions within a Web
application. It is often useful in tracking sessions to know whether a session became
invalid because the container timed out the session, or because a Web component
within the application called the invalidate method. The distinction may be
determined indirectly using listeners and the HttpSession API methods.
nal Version

C H A P T E R SRV.11

Mapping Requests to Servlets

The mapping techniques described in this chapter are required for Web containers
mapping client requests to servlets.1

SRV.11.1 Use of URL Paths

Upon receipt of a client request, the Web container determines the Web application
to which to forward it. The Web application selected must have the the longest
context path that matches the start of the request URL. The matched part of the URL
is the context path when mapping to servlets.

The Web container next must locate the servlet to process the request using
the path mapping procedure described below.

The path used for mapping to a servlet is the request URL from the request
object minus the context path and the path parameters. The URL path mapping
rules below are used in order. The first successful match is used with no further
matches attempted:

1. The container will try to find an exact match of the path of the request to the
path of the servlet. A successful match selects the servlet.

2. The container will recursively try to match the longest path-prefix. This is done
by stepping down the path tree a directory at a time, using the ’/’ character as
a path separator. The longest match determines the servlet selected.

1. Previous versions of this specification made use of these mapping tech-
niques as a suggestion rather than a requirement, allowing servlet con-
tainers to each have their different schemes for mapping client requests
to servlets.
81

MAPPING REQUESTS TO SERVLETS

Fi

82
3. If the last segment in the URL path contains an extension (e.g. .jsp), the serv-
let container will try to match a servlet that handles requests for the extension.
An extension is defined as the part of the last segment after the last ’.’ char-
acter.

4. If neither of the previous three rules result in a servlet match, the container will
attempt to serve content appropriate for the resource requested. If a "default"
servlet is defined for the application, it will be used.

The container must use case-sensitive string comparisons for matching.

SRV.11.2 Specification of Mappings

In the Web application deployment descriptor, the following syntax is used to define
mappings:

• A string beginning with a ‘/’ character and ending with a ‘/*’ suffix is used
for path mapping.

• A string beginning with a ‘*.’ prefix is used as an extension mapping.

• A string containing only the ’/’ character indicates the "default" servlet of
the application. In this case the servlet path is the request URI minus the con-
text path and the path info is null.

• All other strings are used for exact matches only.

SRV.11.2.1 Implicit Mappings

If the container has an internal JSP container, the *.jsp extension is mapped to it,
allowing JSP pages to be executed on demand. This mapping is termed an implicit
mapping. If a *.jsp mapping is defined by the Web application, its mapping takes
precedence over the implicit mapping.

A servlet container is allowed to make other implicit mappings as long as
explicit mappings take precedence. For example, an implicit mapping of *.shtml
could be mapped to include functionality on the server.
nal Version

Specification of Mappings 83
SRV.11.2.2 Example Mapping Set

Consider the following set of mappings:

The following behavior would result:

Note that in the case of /catalog/index.html and /catalog/racecar.bop, the
servlet mapped to “/catalog” is not used because the match is not exact.

Table SRV.11-1 Example Set of Maps

Path Pattern Servlet

/foo/bar/* servlet1

/baz/* servlet2

/catalog servlet3

*.bop servlet4

Table SRV.11-2 Incoming Paths Applied to Example Maps

Incoming Path Servlet Handling Request

/foo/bar/index.html servlet1

/foo/bar/index.bop servlet1

/baz servlet2

/baz/index.html servlet2

/catalog servlet3

/catalog/index.html “default” servlet

/catalog/racecar.bop servlet4

/index.bop servlet4

MAPPING REQUESTS TO SERVLETS

Fi

84
nal Version

C H A P T E R SRV.12

Security

Web applications are created by Application Developers who give, sell, or otherwise
transfer the application to a Deployer for installation into a runtime environment.
Application Developers need to communicate to Deployers how the security is to be
set up for the deployed application. This is accomplished declaratively by use of the
deployment descriptors mechanism.

This chapter describes deployment representations for security requirements.
Similarly to web application directory layouts and deployment descriptors, this
section does not describe requirements for runtime representations. It is
recommended, however, that containers implement the elements set out here as
part of their runtime representations.

SRV.12.1 Introduction

A web application contains resources that can be accessed by many users. These
resources often traverse unprotected, open networks such as the Internet. In such an
environment, a substantial number of web applications will have security
requirements.

Although the quality assurances and implementation details may vary, servlet
containers have mechanisms and infrastructure for meeting these requirements
that share some of the following characteristics:
85

SECURITY

Fi

86
• Authentication: The means by which communicating entities prove to one an-
other that they are acting on behalf of specific identities that are authorized for
access.

• Access control for resources: The means by which interactions with resourc-
es are limited to collections of users or programs for the purpose of enforcing
integrity, confidentiality, or availability constraints.

• Data Integrity: The means used to prove that information has not been modi-
fied by a third party while in transit.

• Confidentiality or Data Privacy: The means used to ensure that information
is made available only to users who are authorized to access it.

SRV.12.2 Declarative Security

Declarative security refers to the means of expressing an application’s security
structure, including roles, access control, and authentication requirements in a form
external to the application. The deployment descriptor is the primary vehicle for
declarative security in web applications.

The Deployer maps the application’s logical security requirements to a
representation of the security policy that is specific to the runtime environment. At
runtime, the servlet container uses the security policy representation to enforce
authentication and authorization.

The security model applies to the static content part of the web application
and to servlets and filters within the application that are requested by the client.
The security model does not apply when a servlet uses the RequestDispatcher to
invoke a static resource or servlet using a forward or an include.

SRV.12.3 Programmatic Security

Programmatic security is used by security aware applications when declarative
security alone is not sufficient to express the security model of the application.
Programmatic security consists of the following methods of the
HttpServletRequest interface:
nal Version

Programmatic Security 87
• getRemoteUser

• isUserInRole

• getUserPrincipal

The getRemoteUser method returns the user name the client used for
authentication. The isUserInRole method determines if a remote user is in a
specified security role. The getUserPrincipal method determines the principal
name of the current user and returns a java.security.Principal object. These
APIs allow servlets to make business logic decisions based on the information
obtained.

If no user has been authenticated, the getRemoteUser method returns null, the
isUserInRole method always returns false, and the getUserPrincipal method
returns null.

The isUserInRole method expects a String user role-name parameter. A
security-role-ref element should be declared in the deployment descriptor
with a role-name sub-element containing the rolename to be passed to the
method. A security-role-ref element should contain a role-link sub-element
whose value is the name of the security role that the user may be mapped into. The
container uses the mapping of security-role-ref to security-role when
determining the return value of the call.

For example, to map the security role reference "FOO" to the security role
with role-name "manager" the syntax would be:

<security-role-ref>

<role-name>FOO</role-name>

<role-link>manager</role-link>

</security-role-ref>

In this case if the servlet called by a user belonging to the "manager" security
role made the API call isUserInRole("FOO") the result would be true.

If no security-role-ref element matching a security-role element has
been declared, the container must default to checking the role-name element
argument against the list of security-role elements for the web application. The
isUserInRole method references the list to determine whether the caller is
mapped to a security role. The developer must be aware that the use of this default
mechanism may limit the flexibility in changing rolenames in the application
without having to recompile the servlet making the call.

SECURITY

Fi

88
SRV.12.4 Roles

A security role is a logical grouping of users defined by the Application Developer
or Assembler. When the application is deployed, roles are mapped by a Deployer to
principals or groups in the runtime environment.

A servlet container enforces declarative or programmatic security for the
principal associated with an incoming request based on the security attributes of
the principal. This may happen in either of the following ways:

1. A deployer has mapped a security role to a user group in the operational envi-
ronment. The user group to which the calling principal belongs is retrieved
from its security attributes. The principal is in the security role only if the prin-
cipal’s user group matches the user group to which the security role has been
mapped by the deployer.

2. A deployer has mapped a security role to a principal name in a security policy
domain. In this case, the principal name of the calling principal is retrieved
from its security attributes. The principal is in the security role only if the prin-
cipal name is the same as a principal name to which the security role was
mapped.

SRV.12.5 Authentication

A web client can authenticate a user to a web server using one of the following
mechanisms:

• HTTP Basic Authentication

• HTTP Digest Authentication

• HTTPS Client Authentication

• Form Based Authentication

SRV.12.5.1 HTTP Basic Authentication

HTTP Basic Authentication, which is based on a username and password, is the
authentication mechanism defined in the HTTP/1.0 specification. A web server
requests a web client to authenticate the user. As part of the request, the web server
passes the realm (a string) in which the user is to be authenticated. The realm string
of Basic Authentication does not have to reflect any particular security policy
nal Version

Authentication 89
domain (confusingly also referred to as a realm). The web client obtains the
username and the password from the user and transmits them to the web server. The
web server then authenticates the user in the specified realm.

Basic Authentication is not a secure authentication protocol. User passwords
are sent in simple base64 encoding, and the target server is not authenticated.
Additional protection can alleviate some of these concerns: a secure transport
mechanism (HTTPS), or security at the network level (such as the IPSEC protocol
or VPN strategies) is applied in some deployment scenarios.

SRV.12.5.2 HTTP Digest Authentication

Like HTTP Basic Authentication, HTTP Digest Authentication authenticates a user
based on a username and a password. However the authentication is performed by
transmitting the password in an encrypted form which is much more secure than the
simple base64 encoding used by Basic Authentication, e.g. HTTPS Client
Authentication. As Digest Authentication is not currently in widespread use, servlet
containers are encouraged but not required to support it.

SRV.12.5.3 Form Based Authentication

The look and feel of the “login screen” cannot be varied using the web browser’s
built-in authentication mechanisms. This specification introduces a required form
based authentication mechanism which allows a Developer to control the look and
feel of the login screens.

The web application deployment descriptor contains entries for a login form
and error page. The login form must contain fields for entering a username and a
password. These fields must be named j_username and j_password, respectively.

When a user attempts to access a protected web resource, the container checks
the user’s authentication. If the user is authenticated and possesses authority to
access the resource, the requested web resource is activated and a reference to it is
returned. If the user is not authenticated, all of the following steps occur:

1. The login form associated with the security constraint is sent to the client and
the URL path triggering the authentication is stored by the container.

2. The user is asked to fill out the form, including the username and password
fields.

3. The client posts the form back to the server.

4. The container attempts to authenticate the user using the information from the

SECURITY

Fi

90
form.

5. If authentication fails, the error page is returned using either a forward or a re-
direct, and the status code of the response is set to 200.

6. If authentication succeeds, the authenticated user’s principal is checked to see
if it is in an authorized role for accessing the resource.

7. If the user is authorized, the client is redirected to the resource using the stored
URL path.

The error page sent to a user that is not authenticated contains information
about the failure.

Form Based Authentication has the same lack of security as Basic
Authentication since the user password is transmitted as plain text and the target
server is not authenticated. Again additional protection can alleviate some of these
concerns: a secure transport mechanism (HTTPS), or security at the network level
(such as the IPSEC protocol or VPN strategies) is applied in some deployment
scenarios.

SRV.12.5.3.1 Login Form Notes

Form based login and URL based session tracking can be problematic to implement.
Form based login should be used only when sessions are being maintained by
cookies or by SSL session information.

In order for the authentication to proceed appropriately, the action of the login
form must always be j_security_check. This restriction is made so that the login
form will work no matter which resource it is for, and to avoid requiring the server
to specify the action field of the outbound form.

Here is an example showing how the form should be coded into the HTML
page:

<form method=”POST” action=”j_security_check”>

<input type=”text” name=”j_username”>

<input type=”password” name=”j_password”>

</form>

If the form based login is invoked because of an HTTP request, the original
request parameters must be preserved by the container for use if, on successful
authentication, it redirects the call to the requested resource.

If the user is authenticated using form login and has created an HTTP session,
the timeout or invalidation of that session leads to the user being logged out in the
nal Version

Server Tracking of Authentication Information 91
sense that subsequent requests must cause the user to be re-authenticated. The
scope of the logout is that same as that of the authentication: for example, if the
container supports single signon, such as Java EE technology compliant web
containers, the user would need to reauthenticate with any of the web applications
hosted on the web container.

SRV.12.5.4 HTTPS Client Authentication

End user authentication using HTTPS (HTTP over SSL) is a strong authentication
mechanism. This mechanism requires the client to possess a Public Key Certificate
(PKC). Currently, PKCs are useful in e-commerce applications and also for a single-
signon from within the browser. Servlet containers that are not Java EE technology
compliant are not required to support the HTTPS protocol.

SRV.12.6 Server Tracking of Authentication Information

As the underlying security identities (such as users and groups) to which roles are
mapped in a runtime environment are environment specific rather than application
specific, it is desirable to:

1. Make login mechanisms and policies a property of the environment the web
application is deployed in.

2. Be able to use the same authentication information to represent a principal to
all applications deployed in the same container, and

3. Require re-authentication of users only when a security policy domain bound-
ary has been crossed.

Therefore, a servlet container is required to track authentication information
at the container level (rather than at the web application level). This allows users
authenticated for one web application to access other resources managed by the
container permitted to the same security identity.

SRV.12.7 Specifying Security Constraints

Security constraints are a declarative way of defining the protection of web content.
A security constraint associates authorization and or user data constraints with

SECURITY

Fi

92
HTTP operations on web resources. A security constraint, which is represented by
security-constraint in deployment descriptor, consists of the following elements:

• web resource collection (web-resource-collection in deployment descriptor)

• authorization constraint (auth-constraint in deployment descriptor)

• user data constraint (user-data-constraint in deployment descriptor)

The HTTP operations and web resources to which a security constraint
applies (i.e. the constrained requests) are identified by one or more web resource
collections. A web resource collection consists of the following elements:

• URL patterns (url-pattern in deployment descriptor)

• HTTP methods (http-method in deployment descriptor)

An authorization constraint establishes a requirement for authentication and
names the authorization roles permitted to perform the constrained requests. A
user must be a member of at least one of the named roles to be permitted to
perform the constrained requests. The special role name “*” is a shorthand for all
role names defined in the deployment descriptor. An authorization constraint that
names no roles indicates that access to the constrained requests must not be
permitted under any circumstances. An authorization constraint consists of the
following element:

• role name (role-name in deployment descriptor)

A user data constraint establishes a requirement that the constrained requests
be received over a protected transport layer connection. The strength of the
required protection is defined by the value of the transport guarantee. A transport
guarantee of INTEGRAL is used to establish a requirement for content integrity
and a transport guarantee of CONFIDENTIAL is used to establish a requirement
for confidentiality. The transport guarantee of “NONE” indicates that the
container must accept the constrained requests when received on any connection
including an unprotected one. A user data constraint consists of the following
element:

• transport guarantee (transport-guarantee in deployment descriptor)

If no authorization constraint applies to a request, the container must accept
the request without requiring user authentication. If no user data constraint applies
to a request, the container must accept the request when received over any
connection including an unprotected one.
nal Version

Specifying Security Constraints 93
SRV.12.7.1 Combining Constraints

When a url-pattern and http-method pair occurs in multiple security constraints,
the constraints (on the pattern and method) are defined by combining the individual
constraints. The rules for combining constraints in which the same pattern and
method occur are as follows:

The combination of authorization constraints that name roles or that imply
roles via the name “*” shall yield the union of the role names in the individual
constraints as permitted roles. A security constraint that does not contain an
authorization constraint shall combine with authorization constraints that name or
imply roles to allow unauthenticated access. The special case of an authorization
constraint that names no roles shall combine with any other constraints to override
their affects and cause access to be precluded.

The combination of user-data-constraints that apply to a common url-
pattern and http-method shall yield the union of connection types accepted by
the individual constraints as acceptable connection types. A security constraint
that does not contain a user-data-constraint shall combine with other user-
data-constraint to cause the unprotected connection type to be an accepted
connection type.

SRV.12.7.2 Example

The following example illustrates the combination of constraints and their
translation into a table of applicable constraints. Suppose that a deployment
descriptor contained the following security constraints.

<security-constraint>

<web-resource-collection>

 <web-resource-name>restricted methods</web-resource-name>

 <url-pattern>/*</url-pattern>

 <url-pattern>/acme/wholesale/*</url-pattern>

 <url-pattern>/acme/retail/*</url-pattern>

 <http-method>DELETE</http-method>

 <http-method>PUT</http-method>

</web-resource-collection>

<auth-constraint/>

</security-constraint>

<security-constraint>

SECURITY

Fi

94
<web-resource-collection>

 <web-resource-name>wholesale</web-resource-name>

 <url-pattern>/acme/wholesale/*</url-pattern>

 <http-method>GET</http-method>

<http-method>PUT</http-method>

</web-resource-collection>

<auth-constraint>

 <role-name>SALESCLERK</role-name>

</auth-constraint>

</security-constraint>

<security-constraint>

<web-resource-collection>

 <web-resource-name>wholesale</web-resource-name>

 <url-pattern>/acme/wholesale/*</url-pattern>

 <http-method>GET</http-method>

 <http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

 <role-name>CONTRACTOR</role-name>

</auth-constraint>

<user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

<security-constraint>

<web-resource-collection>

 <web-resource-name>retail</web-resource-name>

 <url-pattern>/acme/retail/*</url-pattern>

 <http-method>GET</http-method>

 <http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

 <role-name>CONTRACTOR</role-name>
nal Version

Specifying Security Constraints 95
 <role-name>HOMEOWNER</role-name>

</auth-constraint>

</security-constraint>

The translation of this hypothetical deployment descriptor would yield the
constraints defined in Table 4:.

SRV.12.7.3 Processing Requests

When a Servlet container receives a request, it shall use the algorithm described in
SRV.11.1 to select the constraints (if any) defined on the url-pattern that is the
best match to the request URI. If no constraints are selected, the container shall
accept the request. Otherwise the container shall determine if the HTTP method of
the request is constrained at the selected pattern. If it is not, the request shall be
accepted. Otherwise, the request must satisfy the constraints that apply to the http-

Table 4: Security Constraint Table

url-pattern
http-

method
permitted roles supported connection types

/* DELETE access
precluded

not constrained

/* PUT access
precluded

not constrained

/acme/wholesale/* DELETE access precluded not constrained

/acme/wholesale/* GET CONTRACTOR
SALESCLERK

not constrained

/acme/wholesale/* POST CONTRACTOR CONFIDENTIAL

/acme/wholesale/* PUT access
precluded

not constrained

/acme/retail/* DELETE access precluded not constrained

/acme/retail/* GET CONTRACTOR
HOMEOWNER

not constrained

/acme/retail/* POST CONTRACTOR
HOMEOWNER

not constrained

/acme/retail/* PUT access precluded not constrained

SECURITY

Fi

96
method at the url-pattern. Both of the following rules must be satisfied for the
request to be accepted and dispatched to the associated servlet.

1. The characteristics of the connection on which the request was received must
satisfy at least one of the supported connection types defined by the con-
straints. If this rule is not satisfied, the container shall reject the request and re-
direct it to the HTTPS port.1

2. The authentication characteristics of the request must satisfy any au-
thentication and role requirements defined by the constraints. If this rule
is not satisfied because access has been precluded (by an authorization
constraint naming no roles), the request shall be rejected as forbidden
and a 403 (SC_FORBIDDEN) status code shall be returned to the user. If access
is restricted to permitted roles and the request has not been authenticat-
ed, the request shall be rejected as unauthorized and a 401
(SC_UNAUTHORIZED) status code shall be returned to cause authentication. If
access is restricted to permitted roles and the authentication identity of
the request is not a member of any of these roles, the request shall be re-
jected as forbidden and a 403 (SC_FORBIDDEN) status code shall be returned
to the user.

SRV.12.8 Default Policies

By default, authentication is not needed to access resources. Authentication is
needed for requests for a web resource collection only when specified by the
deployment descriptor.

SRV.12.9 Login and Logout

Being logged in to a web application corresponds precisely to there being a
valid non-null value in getUserPrincipal method, discussed in SRV.12.3 and the
javadoc. A null value in that method indicates that a user is logged out.

Containers may create HTTP Session objects to track login state. If a
developer creates a session while a user is not authenticated, and the container

1. As an optimization, a container should reject the request as forbid-
den and return a 403 (SC_FORBIDDEN) status code if it knows that access
will ultimately be precluded (by an authorization constraint naming
no roles).
nal Version

Login and Logout 97
then authenticates the user, the session visible to developer code after login must
be the same session object that was created prior to login occurring so that there is
no loss of session information.

SECURITY

Fi

98
nal Version

C H A P T E R SRV.13

Deployment Descriptor

This chapter specifies the JavaTM Servlet Specification version 2.5 requirements for
Web container support of deployment descriptors. The deployment descriptor
conveys the elements and configuration information of a Web application between
Application Developers, Application Assemblers, and Deployers.

For Java Servlets v.2.4 and greater, the deployment descriptor is defined in
terms of an XML schema document.

For backwards compatibility of applications written to the 2.2 version of the
API, Web containers are also required to support the 2.2 version of the
deployment descriptor. For backwards compatibility of applications written to the
2.3 version of the API, Web containers are also required to support the 2.3 version
of the deployment descriptor. The 2.2 and 2.3 versions are defined in the
appendices.

SRV.13.1 Deployment Descriptor Elements

The following types of configuration and deployment information are required to be
supported in the Web application deployment descriptor for all servlet containers:

• ServletContext Init Parameters

• Session Configuration

• Servlet Declaration

• Servlet Mappings

• Application Lifecyle Listener classes

• Filter Definitions and Filter Mappings
99

100
• MIME Type Mappings

• Welcome File list

• Error Pages

• Locale and Encoding Mappings

Security information which may also appear in the deployment descriptor is
not required to be supported unless the servlet container is part of an
implementation of the Java EE specification.

SRV.13.2 Rules for Processing the Deployment Descriptor

This section lists some general rules that Web containers and developers must note
concerning the processing of the deployment descriptor for a Web application.

• Web containers must remove all leading and trailing whitespace, which is de-
fined as “S(white space)” in XML 1.0 (http://www.w3.org/TR/2000/WD-xml-
2e-20000814), for the element content of the text nodes of a deployment de-
scriptor.

• The deployment descriptor must be valid against the schema. Web containers
and tools that manipulate Web applications have a wide range of options for
checking the validity of a WAR. This includes checking the validity of the de-
ployment descriptor document held within.

Additionally, it is recommended that Web containers and tools that manipu-
late Web applications provide a level of semantic checking. For example, it
should be checked that a role referenced in a security constraint has the same
name as one of the security roles defined in the deployment descriptor.

In cases of non-conformant Web applications, tools and containers should
inform the developer with descriptive error messages. High-end application
server vendors are encouraged to supply this kind of validity checking in the
form of a tool separate from the container.

• The sub elements under web-app can be in an arbitrary order in this version of
the specification. Because of the restriction of XML Schema, The multiplicity
of the elements distributable, session-config, welcome-file-list, jsp-
config, login-config, and locale-encoding-mapping-list was changed
from “optional” to “0 or more”. The containers must inform the developer

101
with a descriptive error message when the deployment descriptor contains
more than one element of session-config, jsp-config, and login-config.
The container must concatenate the items in welcome-file-list and locale-
encoding-mapping-list when there are multiple occurrences. The multiple
occurrence of distributable must be treated exactly in the same way as the
single occurrence of distributable.

• URI paths specified in the deployment descriptor are assumed to be in URL-
decoded form. The containers must inform the developer with a descriptive
error message when URL contains CR(#xD) or LF(#xA). The containers must
preserve all other characters including whitespace in URL.

• Containers must attempt to canonicalize paths in the deployment descriptor.
For example, paths of the form /a/../b must be interpreted as /b. Paths be-
ginning or resolving to paths that begin with ../ are not valid paths in the de-
ployment descriptor.

• URI paths referring to a resource relative to the root of the WAR, or a path
mapping relative to the root of the WAR, unless otherwise specified, should
begin with a leading /.

• In elements whose value is an enumerated type, the value is case sensitive.

SRV.13.3 Deployment Descriptor

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://java.sun.com/xml/ns/javaee"

 xmlns:javaee="http://java.sun.com/xml/ns/javaee"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="2.5">

 <xsd:annotation>

 <xsd:documentation>

 @(#)web-app_2_5.xsds1.62 05/08/06

 </xsd:documentation>

 </xsd:annotation>

 <xsd:annotation>

 <xsd:documentation>

 <![CDATA[

102
This is the XML Schema for the Servlet 2.5 deployment descriptor.

The deployment descriptor must be named "WEB-INF/web.xml" in the

web application's war file. All Servlet deployment descriptors

must indicate the web application schema by using the Java EE

namespace:

http://java.sun.com/xml/ns/javaee

and by indicating the version of the schema by

using the version element as shown below:

 <web-app xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="..."

 version="2.5">

 ...

 </web-app>

The instance documents may indicate the published version of

the schema using the xsi:schemaLocation attribute for Java EE

namespace with the following location:

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd

]]>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:annotation>

 <xsd:documentation>

 The following conventions apply to all Java EE

 deployment descriptor elements unless indicated otherwise.

 - In elements that specify a pathname to a file within the

same JAR file, relative filenames (i.e., those not

starting with "/") are considered relative to the root of

the JAR file's namespace. Absolute filenames (i.e., those

starting with "/") also specify names in the root of the

JAR file's namespace. In general, relative names are

preferred. The exception is .war files where absolute

names are preferred for consistency with the Servlet API.

103
 </xsd:documentation>

 </xsd:annotation>

 <xsd:include schemaLocation="javaee_5.xsd"/>

 <xsd:include schemaLocation="jsp_2_1.xsd"/>

<!-- ** -->

 <xsd:element name="web-app" type="javaee:web-appType">

 <xsd:annotation>

 <xsd:documentation>

The web-app element is the root of the deployment

descriptor for a web application. Note that the sub-elements

of this element can be in the arbitrary order. Because of

that, the multiplicity of the elements of distributable,

session-config, welcome-file-list, jsp-config, login-config,

and locale-encoding-mapping-list was changed from "?" to "*"

in this schema. However, the deployment descriptor instance

file must not contain multiple elements of session-config,

jsp-config, and login-config. When there are multiple elements of

welcome-file-list or locale-encoding-mapping-list, the container

must concatenate the element contents. The multiple occurence

of the element distributable is redundant and the container

treats that case exactly in the same way when there is only

one distributable.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:unique name="web-app-servlet-name-uniqueness">

 <xsd:annotation>

<xsd:documentation>

 The servlet element contains the name of a servlet.

 The name must be unique within the web application.

</xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="javaee:servlet"/>

 <xsd:field xpath="javaee:servlet-name"/>

 </xsd:unique>

104
 <xsd:unique name="web-app-filter-name-uniqueness">

 <xsd:annotation>

<xsd:documentation>

 The filter element contains the name of a filter.

 The name must be unique within the web application.

</xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="javaee:filter"/>

 <xsd:field xpath="javaee:filter-name"/>

 </xsd:unique>

 <xsd:unique name="web-app-ejb-local-ref-name-uniqueness">

 <xsd:annotation>

<xsd:documentation>

 The ejb-local-ref-name element contains the name of an EJB

 reference. The EJB reference is an entry in the web

 application's environment and is relative to the

 java:comp/env context. The name must be unique within

 the web application.

 It is recommended that name is prefixed with "ejb/".

</xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="javaee:ejb-local-ref"/>

 <xsd:field xpath="javaee:ejb-ref-name"/>

 </xsd:unique>

 <xsd:unique name="web-app-ejb-ref-name-uniqueness">

 <xsd:annotation>

<xsd:documentation>

 The ejb-ref-name element contains the name of an EJB

 reference. The EJB reference is an entry in the web

 application's environment and is relative to the

 java:comp/env context. The name must be unique within

 the web application.

 It is recommended that name is prefixed with "ejb/".

105
</xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="javaee:ejb-ref"/>

 <xsd:field xpath="javaee:ejb-ref-name"/>

 </xsd:unique>

 <xsd:unique name="web-app-resource-env-ref-uniqueness">

 <xsd:annotation>

<xsd:documentation>

 The resource-env-ref-name element specifies the name of

 a resource environment reference; its value is the

 environment entry name used in the web application code.

 The name is a JNDI name relative to the java:comp/env

 context and must be unique within a web application.

</xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="javaee:resource-env-ref"/>

 <xsd:field xpath="javaee:resource-env-ref-name"/>

 </xsd:unique>

 <xsd:unique name="web-app-message-destination-ref-uniqueness">

 <xsd:annotation>

<xsd:documentation>

 The message-destination-ref-name element specifies the name of

 a message destination reference; its value is the

 environment entry name used in the web application code.

 The name is a JNDI name relative to the java:comp/env

 context and must be unique within a web application.

</xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="javaee:message-destination-ref"/>

 <xsd:field xpath="javaee:message-destination-ref-name"/>

 </xsd:unique>

 <xsd:unique name="web-app-res-ref-name-uniqueness">

 <xsd:annotation>

<xsd:documentation>

 The res-ref-name element specifies the name of a

 resource manager connection factory reference. The name

106
 is a JNDI name relative to the java:comp/env context.

 The name must be unique within a web application.

</xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="javaee:resource-ref"/>

 <xsd:field xpath="javaee:res-ref-name"/>

 </xsd:unique>

 <xsd:unique name="web-app-env-entry-name-uniqueness">

 <xsd:annotation>

<xsd:documentation>

 The env-entry-name element contains the name of a web

 application's environment entry. The name is a JNDI

 name relative to the java:comp/env context. The name

 must be unique within a web application.

</xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="javaee:env-entry"/>

 <xsd:field xpath="javaee:env-entry-name"/>

 </xsd:unique>

 <xsd:key name="web-app-role-name-key">

 <xsd:annotation>

<xsd:documentation>

 A role-name-key is specified to allow the references

 from the security-role-refs.

</xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="javaee:security-role"/>

 <xsd:field xpath="javaee:role-name"/>

 </xsd:key>

 <xsd:keyref name="web-app-role-name-references"

refer="javaee:web-app-role-name-key">

 <xsd:annotation>

<xsd:documentation>

 The keyref indicates the references from

107
 security-role-ref to a specified role-name.

</xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="javaee:servlet/javaee:security-role-ref"/>

 <xsd:field xpath="javaee:role-link"/>

 </xsd:keyref>

 </xsd:element>

<!-- ** -->

 <xsd:complexType name="auth-constraintType">

 <xsd:annotation>

 <xsd:documentation>

The auth-constraintType indicates the user roles that

should be permitted access to this resource

collection. The role-name used here must either correspond

to the role-name of one of the security-role elements

defined for this web application, or be the specially

reserved role-name "*" that is a compact syntax for

indicating all roles in the web application. If both "*"

and rolenames appear, the container interprets this as all

roles. If no roles are defined, no user is allowed access

to the portion of the web application described by the

containing security-constraint. The container matches

role names case sensitively when determining access.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="javaee:descriptionType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="role-name"

 type="javaee:role-nameType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

108
 <xsd:complexType name="auth-methodType">

 <xsd:annotation>

 <xsd:documentation>

The auth-methodType is used to configure the authentication

mechanism for the web application. As a prerequisite to

gaining access to any web resources which are protected by

an authorization constraint, a user must have authenticated

using the configured mechanism. Legal values are "BASIC",

"DIGEST", "FORM", "CLIENT-CERT", or a vendor-specific

authentication scheme.

Used in: login-config

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="javaee:string"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="dispatcherType">

 <xsd:annotation>

 <xsd:documentation>

The dispatcher has four legal values: FORWARD, REQUEST, INCLUDE,

and ERROR. A value of FORWARD means the Filter will be applied

under RequestDispatcher.forward() calls. A value of REQUEST

means the Filter will be applied under ordinary client calls to

the path or servlet. A value of INCLUDE means the Filter will be

applied under RequestDispatcher.include() calls. A value of

ERROR means the Filter will be applied under the error page

mechanism. The absence of any dispatcher elements in a

filter-mapping indicates a default of applying filters only under

ordinary client calls to the path or servlet.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

109
 <xsd:restriction base="javaee:string">

<xsd:enumeration value="FORWARD"/>

<xsd:enumeration value="INCLUDE"/>

<xsd:enumeration value="REQUEST"/>

<xsd:enumeration value="ERROR"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:simpleType name="encodingType">

 <xsd:annotation>

 <xsd:documentation>

The encodingType defines IANA character sets.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="[^\s]+"/>

 </xsd:restriction>

 </xsd:simpleType>

<!-- ** -->

 <xsd:complexType name="error-codeType">

 <xsd:annotation>

 <xsd:documentation>

The error-code contains an HTTP error code, ex: 404

Used in: error-page

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="javaee:xsdPositiveIntegerType">

<xsd:pattern value="\d{3}"/>

<xsd:attribute name="id" type="xsd:ID"/>

 </xsd:restriction>

 </xsd:simpleContent>

110
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="error-pageType">

 <xsd:annotation>

 <xsd:documentation>

The error-pageType contains a mapping between an error code

or exception type to the path of a resource in the web

application.

Used in: web-app

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:choice>

<xsd:element name="error-code"

 type="javaee:error-codeType"/>

<xsd:element name="exception-type"

 type="javaee:fully-qualified-classType">

 <xsd:annotation>

 <xsd:documentation>

 The exception-type contains a fully qualified class

 name of a Java exception type.

 </xsd:documentation>

 </xsd:annotation>

</xsd:element>

 </xsd:choice>

 <xsd:element name="location"

 type="javaee:war-pathType">

<xsd:annotation>

 <xsd:documentation>

 The location element contains the location of the

 resource in the web application relative to the root of

 the web application. The value of the location must have

 a leading `/'.

111
 </xsd:documentation>

</xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="filter-mappingType">

 <xsd:annotation>

 <xsd:documentation>

Declaration of the filter mappings in this web

application is done by using filter-mappingType.

The container uses the filter-mapping

declarations to decide which filters to apply to a request,

and in what order. The container matches the request URI to

a Servlet in the normal way. To determine which filters to

apply it matches filter-mapping declarations either on

servlet-name, or on url-pattern for each filter-mapping

element, depending on which style is used. The order in

which filters are invoked is the order in which

filter-mapping declarations that match a request URI for a

servlet appear in the list of filter-mapping elements.The

filter-name value must be the value of the filter-name

sub-elements of one of the filter declarations in the

deployment descriptor.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="filter-name"

 type="javaee:filter-nameType"/>

 <xsd:choice minOccurs="1" maxOccurs="unbounded">

<xsd:element name="url-pattern"

 type="javaee:url-patternType"/>

<xsd:element name="servlet-name"

 type="javaee:servlet-nameType"/>

 </xsd:choice>

 <xsd:element name="dispatcher"

 type="javaee:dispatcherType"

112
 minOccurs="0" maxOccurs="4"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="filter-nameType">

 <xsd:annotation>

 <xsd:documentation>

The logical name of the filter is declare

by using filter-nameType. This name is used to map the

filter. Each filter name is unique within the web

application.

Used in: filter, filter-mapping

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="javaee:nonEmptyStringType"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="filterType">

 <xsd:annotation>

 <xsd:documentation>

The filterType is used to declare a filter in the web

application. The filter is mapped to either a servlet or a

URL pattern in the filter-mapping element, using the

filter-name value to reference. Filters can access the

initialization parameters declared in the deployment

descriptor at runtime via the FilterConfig interface.

Used in: web-app

 </xsd:documentation>

 </xsd:annotation>

113
 <xsd:sequence>

 <xsd:group ref="javaee:descriptionGroup"/>

 <xsd:element name="filter-name"

 type="javaee:filter-nameType"/>

 <xsd:element name="filter-class"

 type="javaee:fully-qualified-classType">

<xsd:annotation>

 <xsd:documentation>

 The fully qualified classname of the filter.

 </xsd:documentation>

</xsd:annotation>

 </xsd:element>

 <xsd:element name="init-param"

 type="javaee:param-valueType"

 minOccurs="0" maxOccurs="unbounded">

<xsd:annotation>

 <xsd:documentation>

 The init-param element contains a name/value pair as

 an initialization param of a servlet filter

 </xsd:documentation>

</xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="form-login-configType">

 <xsd:annotation>

 <xsd:documentation>

The form-login-configType specifies the login and error

pages that should be used in form based login. If form based

authentication is not used, these elements are ignored.

Used in: login-config

 </xsd:documentation>

114
 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="form-login-page"

 type="javaee:war-pathType">

<xsd:annotation>

 <xsd:documentation>

 The form-login-page element defines the location in the web

 app where the page that can be used for login can be

 found. The path begins with a leading / and is interpreted

 relative to the root of the WAR.

 </xsd:documentation>

</xsd:annotation>

 </xsd:element>

 <xsd:element name="form-error-page"

 type="javaee:war-pathType">

<xsd:annotation>

 <xsd:documentation>

 The form-error-page element defines the location in

 the web app where the error page that is displayed

 when login is not successful can be found.

 The path begins with a leading / and is interpreted

 relative to the root of the WAR.

 </xsd:documentation>

</xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:simpleType name=”http-methodType”>

 <xsd:annotation>

 <xsd:documentation>

A HTTP method type as defined in HTTP 1.1 section 2.2.

 </xsd:documentation>

115
 </xsd:annotation>

 <xsd:restriction base=”xsd:token”>

 <xsd:pattern value="[!-~-[\(\)<>@,;:"/

\[\]?=\{\}\\\p{Z}]]+"/>

 </xsd:restriction>

 </xsd:simpleType>

<!-- ** -->

 <xsd:simpleType name="load-on-startupType">

 <xsd:union memberTypes="javaee:null-charType xsd:integer"/>

 </xsd:simpleType>

<!-- ** -->

 <xsd:complexType name="locale-encoding-mapping-listType">

 <xsd:annotation>

 <xsd:documentation>

The locale-encoding-mapping-list contains one or more

locale-encoding-mapping(s).

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="locale-encoding-mapping"

 type="javaee:locale-encoding-mappingType"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="locale-encoding-mappingType">

 <xsd:annotation>

 <xsd:documentation>

The locale-encoding-mapping contains locale name and

encoding name. The locale name must be either "Language-code",

such as "ja", defined by ISO-639 or "Language-code_Country-code",

such as "ja_JP". "Country code" is defined by ISO-3166.

116
 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="locale"

 type="javaee:localeType"/>

 <xsd:element name="encoding"

 type="javaee:encodingType"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:simpleType name="localeType">

 <xsd:annotation>

 <xsd:documentation>

The localeType defines valid locale defined by ISO-639-1

and ISO-3166.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="[a-z]{2}(_|-)?([\p{L}\-\p{Nd}]{2})?"/>

 </xsd:restriction>

 </xsd:simpleType>

<!-- ** -->

 <xsd:complexType name="login-configType">

 <xsd:annotation>

 <xsd:documentation>

The login-configType is used to configure the authentication

method that should be used, the realm name that should be

used for this application, and the attributes that are

needed by the form login mechanism.

Used in: web-app

 </xsd:documentation>

117
 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="auth-method"

 type="javaee:auth-methodType"

 minOccurs="0"/>

 <xsd:element name="realm-name"

 type="javaee:string" minOccurs="0">

<xsd:annotation>

 <xsd:documentation>

 The realm name element specifies the realm name to

 use in HTTP Basic authorization.

 </xsd:documentation>

</xsd:annotation>

 </xsd:element>

 <xsd:element name="form-login-config"

 type="javaee:form-login-configType"

 minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="mime-mappingType">

 <xsd:annotation>

 <xsd:documentation>

The mime-mappingType defines a mapping between an extension

and a mime type.

Used in: web-app

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:annotation>

<xsd:documentation>

 The extension element contains a string describing an

 extension. example: "txt"

118
</xsd:documentation>

 </xsd:annotation>

 <xsd:element name="extension"

 type="javaee:string"/>

 <xsd:element name="mime-type"

 type="javaee:mime-typeType"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="mime-typeType">

 <xsd:annotation>

 <xsd:documentation>

The mime-typeType is used to indicate a defined mime type.

Example:

"text/plain"

Used in: mime-mapping

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="javaee:string">

<xsd:pattern value="[^\p{Cc}^\s]+/[^\p{Cc}^\s]+"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="nonEmptyStringType">

 <xsd:annotation>

 <xsd:documentation>

This type defines a string which contains at least one

character.

 </xsd:documentation>

 </xsd:annotation>

119
 <xsd:simpleContent>

 <xsd:restriction base="javaee:string">

<xsd:minLength value="1"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:simpleType name="null-charType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value=""/>

 </xsd:restriction>

 </xsd:simpleType>

<!-- ** -->

 <xsd:complexType name="security-constraintType">

 <xsd:annotation>

 <xsd:documentation>

The security-constraintType is used to associate

security constraints with one or more web resource

collections

Used in: web-app

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="display-name"

 type="javaee:display-nameType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="web-resource-collection"

 type="javaee:web-resource-collectionType"

 maxOccurs="unbounded"/>

 <xsd:element name="auth-constraint"

 type="javaee:auth-constraintType"

 minOccurs="0"/>

 <xsd:element name="user-data-constraint"

 type="javaee:user-data-constraintType"

 minOccurs="0"/>

120
 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="servlet-mappingType">

 <xsd:annotation>

 <xsd:documentation>

The servlet-mappingType defines a mapping between a

servlet and a url pattern.

Used in: web-app

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="servlet-name"

 type="javaee:servlet-nameType"/>

 <xsd:element name="url-pattern"

 type="javaee:url-patternType"

 minOccurs="1" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="servlet-nameType">

 <xsd:annotation>

 <xsd:documentation>

The servlet-name element contains the canonical name of the

servlet. Each servlet name is unique within the web

application.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="javaee:nonEmptyStringType"/>

 </xsd:simpleContent>

121
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="servletType">

 <xsd:annotation>

 <xsd:documentation>

The servletType is used to declare a servlet.

It contains the declarative data of a

servlet. If a jsp-file is specified and the load-on-startup

element is present, then the JSP should be precompiled and

loaded.

Used in: web-app

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="javaee:descriptionGroup"/>

 <xsd:element name="servlet-name"

 type="javaee:servlet-nameType"/>

 <xsd:choice>

<xsd:element name="servlet-class"

 type="javaee:fully-qualified-classType">

 <xsd:annotation>

 <xsd:documentation>

 The servlet-class element contains the fully

 qualified class name of the servlet.

 </xsd:documentation>

 </xsd:annotation>

</xsd:element>

<xsd:element name="jsp-file"

 type="javaee:jsp-fileType"/>

 </xsd:choice>

 <xsd:element name="init-param"

 type="javaee:param-valueType"

 minOccurs="0" maxOccurs="unbounded"/>

122
 <xsd:element name="load-on-startup"

 type="javaee:load-on-startupType"

 minOccurs="0">

<xsd:annotation>

 <xsd:documentation>

 The load-on-startup element indicates that this

 servlet should be loaded (instantiated and have

 its init() called) on the startup of the web

 application. The optional contents of these

 element must be an integer indicating the order in

 which the servlet should be loaded. If the value

 is a negative integer, or the element is not

 present, the container is free to load the servlet

 whenever it chooses. If the value is a positive

 integer or 0, the container must load and

 initialize the servlet as the application is

 deployed. The container must guarantee that

 servlets marked with lower integers are loaded

 before servlets marked with higher integers. The

 container may choose the order of loading of

 servlets with the same load-on-start-up value.

 </xsd:documentation>

</xsd:annotation>

 </xsd:element>

 <xsd:element name="run-as"

 type="javaee:run-asType"

 minOccurs="0"/>

 <xsd:element name="security-role-ref"

 type="javaee:security-role-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="session-configType">

 <xsd:annotation>

 <xsd:documentation>

The session-configType defines the session parameters

for this web application.

123
Used in: web-app

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="session-timeout"

 type="javaee:xsdIntegerType"

 minOccurs="0">

<xsd:annotation>

 <xsd:documentation>

 The session-timeout element defines the default

 session timeout interval for all sessions created

 in this web application. The specified timeout

 must be expressed in a whole number of minutes.

 If the timeout is 0 or less, the container ensures

 the default behaviour of sessions is never to time

 out. If this element is not specified, the container

 must set its default timeout period.

 </xsd:documentation>

</xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="transport-guaranteeType">

 <xsd:annotation>

 <xsd:documentation>

The transport-guaranteeType specifies that the communication

between client and server should be NONE, INTEGRAL, or

CONFIDENTIAL. NONE means that the application does not

require any transport guarantees. A value of INTEGRAL means

that the application requires that the data sent between the

client and server be sent in such a way that it can't be

changed in transit. CONFIDENTIAL means that the application

requires that the data be transmitted in a fashion that

prevents other entities from observing the contents of the

124
transmission. In most cases, the presence of the INTEGRAL or

CONFIDENTIAL flag will indicate that the use of SSL is

required.

Used in: user-data-constraint

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="javaee:string">

<xsd:enumeration value="NONE"/>

<xsd:enumeration value="INTEGRAL"/>

<xsd:enumeration value="CONFIDENTIAL"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="user-data-constraintType">

 <xsd:annotation>

 <xsd:documentation>

The user-data-constraintType is used to indicate how

data communicated between the client and container should be

protected.

Used in: security-constraint

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="javaee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="transport-guarantee"

 type="javaee:transport-guaranteeType"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

125
<!-- ** -->

 <xsd:complexType name="war-pathType">

 <xsd:annotation>

 <xsd:documentation>

The elements that use this type designate a path starting

with a "/" and interpreted relative to the root of a WAR

file.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="javaee:string">

<xsd:pattern value="/.*"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:simpleType name="web-app-versionType">

 <xsd:annotation>

 <xsd:documentation>

This type contains the recognized versions of

web-application supported. It is used to designate the

version of the web application.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base="xsd:token">

 <xsd:enumeration value="2.5"/>

 </xsd:restriction>

 </xsd:simpleType>

<!-- ** -->

 <xsd:complexType name="web-appType">

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:group ref="javaee:descriptionGroup"/>

 <xsd:element name="distributable"

 type="javaee:emptyType"/>

126
 <xsd:element name="context-param"

 type="javaee:param-valueType">

<xsd:annotation>

 <xsd:documentation>

 The context-param element contains the declaration

 of a web application's servlet context

 initialization parameters.

 </xsd:documentation>

</xsd:annotation>

 </xsd:element>

 <xsd:element name="filter"

 type="javaee:filterType"/>

 <xsd:element name="filter-mapping"

 type="javaee:filter-mappingType"/>

 <xsd:element name="listener"

 type="javaee:listenerType"/>

 <xsd:element name="servlet"

 type="javaee:servletType"/>

 <xsd:element name="servlet-mapping"

 type="javaee:servlet-mappingType"/>

 <xsd:element name="session-config"

 type="javaee:session-configType"/>

 <xsd:element name="mime-mapping"

 type="javaee:mime-mappingType"/>

 <xsd:element name="welcome-file-list"

 type="javaee:welcome-file-listType"/>

 <xsd:element name="error-page"

 type="javaee:error-pageType"/>

 <xsd:element name="jsp-config"

 type="javaee:jsp-configType"/>

 <xsd:element name="security-constraint"

 type="javaee:security-constraintType"/>

 <xsd:element name="login-config"

 type="javaee:login-configType"/>

 <xsd:element name="security-role"

 type="javaee:security-roleType"/>

 <xsd:group ref="javaee:jndiEnvironmentRefsGroup"/>

 <xsd:element name="message-destination"

 type="javaee:message-destinationType"/>

 <xsd:element name="locale-encoding-mapping-list"

127
 type="javaee:locale-encoding-mapping-listType"/>

 </xsd:choice>

 <xsd:attribute name="version"

 type="javaee:web-app-versionType"

 use="required"/>

 <xsd:attribute name="id" type="xsd:ID"/>

 xsd:attribute name="metadata-complete" type="xsd:boolean">

 <xsd:annotation>

 <xsd:documentation>

 The metadata-complete attribute defines whether this deployment

 descriptor is complete, or whether the class files

 of the jar file should be examined for annotations

 that specify deployment information.

 If metadata-complete is set to "true", the deployment tool

 must ignore any Servlet annotations present in the

 class files of the application.

 If metadata-complete is not specified or is set to "false", the

 deployment tool must examine the class files of the

 application for annotations, as specified by the Servlet

 specifications.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="web-resource-collectionType">

 <xsd:annotation>

 <xsd:documentation>

The web-resource-collectionType is used to identify a subset

of the resources and HTTP methods on those resources within

a web application to which a security constraint applies. If

no HTTP methods are specified, then the security constraint

applies to all HTTP methods.

128
Used in: security-constraint

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="web-resource-name"

 type="javaee:string">

<xsd:annotation>

 <xsd:documentation>

 The web-resource-name contains the name of this web

 resource collection.

 </xsd:documentation>

</xsd:annotation>

 </xsd:element>

 <xsd:element name="description"

 type="javaee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="url-pattern"

 type="javaee:url-patternType"

 maxOccurs="unbounded"/>

 <xsd:element name="http-method"

 type="javaee:http-methodType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="welcome-file-listType">

 <xsd:annotation>

 <xsd:documentation>

The welcome-file-list contains an ordered list of welcome

files elements.

Used in: web-app

 </xsd:documentation>

 </xsd:annotation>

129
 <xsd:sequence>

 <xsd:element name="welcome-file"

 type="xsd:string"

 maxOccurs="unbounded">

<xsd:annotation>

 <xsd:documentation>

 The welcome-file element contains file name to use

 as a default welcome file, such as index.html

 </xsd:documentation>

</xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

</xsd:schema>

SRV.13.4 Deployment Descriptor Diagram

This section illustrates the elements in deployment descriptor. All diagrams follow
the convention displayed in Figure SRV.13.1. Attributes are not shown in the
diagrams. See Deployment Descriptor Schema for the detailed information.

Figure SRV.13.1 Convention of the Diagram of Deployment Descriptor Element

130
1. web-app Element
The web-app element is the root deployment descriptor for a Web application. This
element contains the following elements.This element has a required attribute ver-
sion to specify to which version of the schema the deployment descriptor
conforms. All sub elements under this element can be in an arbitrary order.

Figure SRV.13.2 web-app Element Structure

2. description Element

131
The description element is to provide a text describing the parent element. This
element occurs not only under the web-app element but also under other multiple
elements. It has an optional attribute xml:lang to indicate which language is used
in the description. The default value of this attribute is English (“en”).

3. display-name Element
The display-name contains a short name that is intended to be displayed by tools.
The display name need not to be unique. This element has an optional attribute
xml:lang to specify the language.

4. icon Element
The icon contains small-icon and large-icon elements that specify the file names
for small and large GIF or JPEG icon images used to represent the parent element in
a GUI tool.

Figure SRV.13.3 icon Element Structure

5. distributable Element
The distributable indicates that this Web application is programmed
appropriately to be deployed into a distributed servlet container.

6. context-param Element
The context-param contains the declaration of a Web application’s servlet
context initialization parameters.

7. filter Element
The filter declares a filter in the Web application. The filter is mapped to either a
servlet or a URL pattern in the filter-mapping element, using the filter-name
value to reference. Filters can access the initialization parameters declared in the
deployment descriptor at runtime via the FilterConfig interface. The filter-name
element is the logical name of the filter. It must be unique within the Web
application. The element content of filter-name element must not be empty. The

132
filter-class is the fully qualified class name of the filter. The init-param
element contains name-value pair as an initialization parameter of this filter.

Figure SRV.13.4 filter Element Structure

8. filter-mapping Element
The filter-mapping is used by the container to decide which filters to apply to a
request in what order. The value of the filter-name must be one of the filter
declarations in the deployment descriptor. The maching request can be specified
either url-pattern or servlet-name.

Figure SRV.13.5 filter-mapping Element Structure

133
9. listener Element
The listener indicates the deployment properties for an application listener bean.
The sub-element listener-class declares that a class in the application must be
registered as a Web application listener bean. The value is the fully qualified
classname of the listener class.

Figure SRV.13.6 listener Element Structure

10. servlet Element
The servlet is used to declare a servlet. It contains the declarative data of a servlet.
The jsp-file element contains the full path to a JSP file within the web
application beginning with a “/”. If a jsp-file is specified and the load-on-
startup element is present, then the JSP should be precompiled and loaded. The
servlet-name element contains the canonical name of the servlet. Each servlet
name is unique within the web application. The element content of servlet-name
must not be empty. The servlet-class contains the fully qualified class name of
the servlet. The run-as element specifies the identity to be used for the execution
of a component. It contains an optional description, and the name of a security
role specified by the role-name element. The element load-on-startup
indicates that this servlet should be loaded (instantiated and have its init() called) on
the startup of the Web application. The element content of this element must be an
integer indicating the order in which the servlet should be loaded. If the value is a
negative integer, or the element is not present, the container is free to load the servlet
whenever it chooses. If the value is a positive integer or 0, the container must load
and initialize the servlet as the application is deployed. The container must
guarantee that servlets marked with lower integers are loaded before servlets marked
with higher integers. The container may choose the order of loading of servlets with
the same load-on-startup value. The security-role-ref element declares
the security role reference in a component’s or in a deployment component’s code. It
consists of an optional description, the security role name used in the

134
code(role-name), and an optional link to a security role(role-link). If the
security role is not specified, the deployer must choose an appropriate security role.

Figure SRV.13.7 servlet Element Structure

135
11. servlet-mapping Element
The servlet-mapping defines a mapping between a servlet and a URL pattern.

Figure SRV.13.8 servlet-mapping Element Structure

12. session-config Element
The session-config defines the session parameters for this Web application. The
sub-element session-timeout defines the default session timeout interval for all
sessions created in this Web application. The specified timeout must be expressed in
a whole number of minutes. If the timeout is 0 or less, the container ensures the
default behaviour of sessions is never to time out. If this element is not specified, the
container must set its default timeout period.

Figure SRV.13.9 session-config Element Structure

13. mime-mapping Element
The mime-mapping defines a mapping between an extension and a mime type. The
extension element contains a string describing an extension, such as “txt”.

Figure SRV.13.10 mime-mapping Element Structure

136
14. welcome-file-list Element
The welcome-file-list contains an ordered list of welcome files. The sub-
element welcome-file contains a file name to use as a default welcome file, such
as index.html

Figure SRV.13.11 welcome-file-list Element Structure

15. error-page Element
The error-page contains a mapping between an error code or an exception type to
the path of a resource in the Web application. The sub-element exception-type
contains a fully qualified class name of a Java exception type. The sub-element
location element contains the location of the resource in the web application
relative to the root of the web application. The value of the location must have a
leading ‘/’.

Figure SRV.13.12 error-page Element Structure

137
16. jsp-config Element
The jsp-config is used to provide global configuration information for the JSP
files in a web application. It has two sub-elements, taglib and jsp-property-
group. The taglib element can be used to provide information on a tag library that
is used by a JSP page within the Web application. See JavaServer Pages
specification version 2.1 for detail.

Figure SRV.13.13 jsp-config Element Structure

17. security-constraint Element
The security-constraint is used to associate security constraints with one or
more web resource collections. The sub-element web-resource-collection
indentifies a subset of the resources and HTTP methods on those resources within a
Web application to which a security constraint applies. The auth-constraint
indicates the user roles that should be permitted access to this resource collection.
The role-name used here must either correspond to the role-name of one of the
security-role elements defined for this Web application, or be the specially
reserved role-name "*" that is a compact syntax for indicating all roles in the web
application. If both "*" and rolenames appear, the container interprets this as all
roles. If no roles are defined, no user is allowed access to the portion of the Web
application described by the containing security-constraint. The container
matches role names case sensitively when determining access. The user-data-
constraint indicates how data communicated between the client and container
should be protected by the sub-element transport-guarantee. The legal values
of the transport-guarantee is either one of NONE, INTEGRAL, or CONFIDEN-
TIAL.

138
Figure SRV.13.14 security-constraint Element Structure

18. login-config Element
The login-config is used to configure the authentication method that should be
used, the realm name that should be used for this application, and the attributes that
are needed by the form login mechanism. The sub-element auth-method
configures the authentication mechanism for the Web application. The element
content must be either BASIC, DIGEST, FORM, CLIENT-CERT, or a vendor-specific
authentication scheme. The realm-name indicates the realm name to use for the
authentication scheme chosen for the Web application. The form-login-config
specifies the login and error pages that should be used in FORM based login. If
FORM based login is not used, these elements are ignored.

139
Figure SRV.13.15 login-config Element Structure

19. security-role Element
The security-role defines a security role. The sub-element role-name
designates the name of the security role. The name must conform to the lexical rules
for NMTOKEN.

Figure SRV.13.16 security-role Element Structure

20. env-entry Element
The env-entry declares an application’s environment entry. The sub-element
env-entry-name contains the name of a deployment component’s environment
entry. The name is a JNDI name relative to the java:comp/env context. The name
must be unique within a deployment component. The env-entry-type contains
the fully-qualified Java type of the environment entry value that is expected by the
application’s code. The sub-element env-entry-value designates the value of a
deployment component’s environment entry. The value must be a String that is valid

140
for the constructor of the specified type that takes a single String as a parameter, or a
single character for java.lang.Character.

Figure SRV.13.17 env-entry Element Structure

21. ejb-ref Element
The ejb-ref declares the reference to an enterprise bean’s home. The ejb-ref-
name specifies the name used in the code of the deployment component that is
referencing the enterprise bean. The ejb-ref-type is the expected type of the
referenced enterprise bean, which is either Entity or Session. The home defines
the fully qualified name of the the referenced enterprise bean’s home interface. The
remote defines the fully qualified name of the referenced enterprise bean’s remote
interface. The ejb-link specifies that an EJB reference is linked to the enterprise
bean. See Java Platform, Enterprise Edition, version 5.0 for more detail.

Figure SRV.13.18 ejb-ref Element Structure

141
22. ejb-local-ref Element
The ejb-local-ref declares the reference to the enterprise bean’s local home.
The local-home defines the fully qualified name of the enterprise bean’s local
home interface. The local defines the fully qualified name of the enterprise bean’s
local interface.

Figure SRV.13.19 ejb-local-ref Element Structure

23. service-ref Element
The service-ref declares the reference to a Web service. The service-ref-
name declares the logical name that the components in the module use to look up the
Web service. It is recommended that all service reference names start with /ser-
vice/. The service-interface defines the fully qualified class name of the
JAX-WS Service interface that the client depends on. In most cases, the value will
be javax.xml.rpc.Service. A JAX-WS generated Service Interface class may also be
specified. The wsdl-file element contains the URI location of a WSDL file. The
location is relative to the root of the module. The jaxrpc-mapping-file contains
the name of a file that describes the JAX-WS mapping between the Java interaces
used by the application and the WSDL description in the wsdl-file. The file name
is a relative path within the module file. The service-qname element declares the
specific WSDL service element that is being refered to. It is not specified if no
wsdl-file is declared. The port-component-ref element declares a client
dependency on the container for resolving a Service Endpoint Interface to a WSDL
port. It optionally associates the Service Endpoint Interface with a particular port-
component. This is only used by the container for a Service.getPort(Class) method
call. The handler element declares the handler for a port-component. Handlers can

142
access the init-param name-value pairs using the HandlerInfo interface. If port-
name is not specified, the handler is assumed to be associated with all ports of the
service. See JSR-109 Specification [http://www.jcp.org/en/jsr/
detail?id=921] for detail. The container that is not a part of a Java EE
implementation is not required to support this element.

Figure SRV.13.20 service-ref Element Structure

24. resource-ref Element
The resource-ref contains the declaration of a deployment component’s
reference to the external resource. The res-ref-name specifies the name of a
resource manager connection factory reference. The name is a JNDI name relative
to the java:comp/env context. The name must be unique within a deployment file.
The res-type element specifies the type of the data source.The type is the fully
qualified Java language class or the interface expected to be implemented by the
data source. The res-auth specifies whether the deployment component code
signs on programmatically to the resource manager, or whether the container will
sign on to the resource manager on behalf of the deployment component. In the
latter case, the container uses the information supplied by the deployer. The res-
sharing-scope specifies whether connections obtained through the given

143
resource manager connection factory reference can be shared. The value, if
specified, must be either Shareable or Unshareable.

Figure SRV.13.21 resource-ref Element Structure

25. resource-env-ref Element
The resource-env-ref contains the deployment component’s reference to the
administered object associated with a resource in the deployment component’s
environment. The resource-env-ref-name specifies the name of the resource
environment reference. The value is the environment entry name used in the
deployment component code and is a JNDI name relative to the java:comp/env
context and must be unique within the deployment component. The resource-
env-ref-type specifies the type of the resource environment reference. It is the
fully qualified name of a Java language class or the interface.

Figure SRV.13.22 resource-env-ref Element Structure

26. message-destination-ref Element
The message-destination-ref element contains a declaration of deployment
component’s reference to a message destination associated with a resource in
deployment component’s environment. The message-destination-ref-name
element specifies the name of a message destination reference; its value is the

144
environment entry name used in deployment component code. The name is a JNDI
name relative to the java:comp/env context and must be unique within an ejb-jar for
enterprise beans or a deployment file for others. The message-destination-
type specifies the type of the destination. The type is specified by the Java interface
expected to be implemented by the destination. The message-destination-
usage specifies the use of the message destination indicated by the reference. The
value indicates whether messages are consumed from the message destination,
produced for the destination, or both. The Assembler makes use of this information
in linking producers of a destination with its consumers. The message-destina-
tion-link links a message destination reference or message-driven bean to a
message destination. The Assembler sets the value to reflect the flow of messages
between producers and consumers in the application. The value must be the mes-
sage-destination-name of a message destination in the same deployment file or
in another deployment file in the same Java EE application unit. Alternatively, the
value may be composed of a path name specifying a deployment file containing the
referenced message destination with the message-destination-name of the
destination appended and separated from the path name by "#". The path name is
relative to the deployment file containing deployment component that is referencing
the message destination. This allows multiple message destinations with the same
name to be uniquely identified.

Example:
<message-destination-ref>

 <message-destination-ref-name>jms/StockQueue</message-

destination-ref-name>

 <message-destination-type>javax.jms.Queue</message-

destination-type>

 <message-destination-usage>Consumes</message-destination-

usage>

 <message-destination-link>CorporateStocks</message-

destination-link>

</message-destination-ref>

145
Figure SRV.13.23 message-destination-ref Element Structure

27. message-destination Element
The message-destination specifies a message destination. The logical destination
described by this element is mapped to a physical destination by the deployer. The
message-destination-name element specifies a name for a message destination. This
name must be unique among the names of message destinations within the
deployment file.

Example:
<message-destination>

 <message-destination-name>CorporateStocks</message-

destination-name>

</message-destination>

Figure SRV.13.24 message-destination Element Structure

146
28. locale-encoding-mapping-list Element
The locale-encoding-mapping-list contains the mapping between the locale
and the encoding. specified by the sub-element locale-encoding-mapping.

Example:
<locale-encoding-mapping-list>

<locale-encoding-mapping>

<locale>ja</locale>

<encoding>Shift_JIS</encoding>

</locale-encoding-mapping>

</locale-encoding-mapping-list>

Figure SRV.13.25 locale-encoding-mapping-list Element Structure

SRV.13.5 Examples

The following examples illustrate the usage of the definitions listed in the
deployment descriptor schema.

147
SRV.13.5.1 A Basic Example

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_5.xsd”

version=”2.5”>

<display-name>A Simple Application</display-name>

<context-param>

<param-name>Webmaster</param-name>

<param-value>webmaster@mycorp.com</param-value>

</context-param>

<servlet>

<servlet-name>catalog</servlet-name>

<servlet-class>com.mycorp.CatalogServlet

 </servlet-class>

<init-param>

<param-name>catalog</param-name>

<param-value>Spring</param-value>

</init-param>

</servlet>

<servlet-mapping>

<servlet-name>catalog</servlet-name>

<url-pattern>/catalog/*</url-pattern>

</servlet-mapping>

<session-config>

<session-timeout>30</session-timeout>

</session-config>

<mime-mapping>

<extension>pdf</extension>

<mime-type>application/pdf</mime-type>

</mime-mapping>

<welcome-file-list>

<welcome-file>index.jsp</welcome-file>

<welcome-file>index.html</welcome-file>

<welcome-file>index.htm</welcome-file>

</welcome-file-list>

<error-page>

<error-code>404</error-code>

<location>/404.html</location>

</error-page>

</web-app>

148
SRV.13.5.2 An Example of Security

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_5.xsd"

version=”2.5”>

<display-name>A Secure Application</display-name>

<servlet>

<servlet-name>catalog</servlet-name>

<servlet-class>com.mycorp.CatalogServlet

</servlet-class>

<init-param>

<param-name>catalog</param-name>

<param-value>Spring</param-value>

</init-param>

<security-role-ref>

<role-name>MGR</role-name>

<!-- role name used in code -->

<role-link>manager</role-link>

</security-role-ref>

</servlet>

<security-role>

<role-name>manager</role-name>

</security-role>

<servlet-mapping>

<servlet-name>catalog</servlet-name>

<url-pattern>/catalog/*</url-pattern>

</servlet-mapping>

<security-constraint>

<web-resource-collection>

<web-resource-name>SalesInfo

</web-resource-name>

<url-pattern>/salesinfo/*</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>manager</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL

</transport-guarantee>

149
</user-data-constraint>

</security-constraint>

</web-app>

C H A P T E R SRV.14

Java Enterprise Edition 5

Containers

This chapter details the requirements for JavaTM Enterprise Edition (Java EE) 1
version 5 technology compliant web containers.

SRV.14.1 Sessions

Distributed servlet containers that are part of a Java EE implementation must
support the mechanism necessary for migrating other Java EE objects from one
JVM to another.

SRV.14.2 Web Applications

Java EE technology-compliant containers are required to provide a mechanism by
which a deployer can learn what JAR files containing resources and code are
available for the Web application. Providing such the mechanism is recommended,
but not required for the containers that are not part of Java EE technology-compliant
implementation. The containers should provide a convenient procedure for editing
and configuring library files or extensions.

1. The Java EE Specification is available at http://java.sun.com/javaee
150

JAVA ENTERPRISE EDITION 5 CONTAINERS

Fi

151
SRV.14.2.1 Web Application Class Loader

Servlet containers that are part of a Java EE product should not allow the application
to override Java SE or Java EE platform classes, such as those in java.* and
javax.* namespaces, that either Java SE or Java EE do not allow to be modified.

SRV.14.2.2 Web Application Environment

Java EE defines a naming environment that allows applications to easily access
resources and external information without explicit knowledge of how the external
information is named or organized.

As servlets are an integral component type of Java EE technology, provision
has been made in the Web application deployment descriptor for specifying
information allowing a servlet to obtain references to resources and enterprise
beans. The deployment elements that contain this information are:

• env-entry

• ejb-ref

• ejb-local-ref

• resource-ref

• resource-env-ref

• service-ref

The developer uses these elements to describe certain objects that the Web
application requires to be registered in the JNDI namespace in the Web container
at runtime.

The requirements of the Java EE environment with regard to setting up the
environment are described in Chapter 5 of the Java EE Specification.
Servlet containers that are part of a Java EE technology-compliant implementation
are required to support this syntax. Consult the Java EE 5 Specification for more
details. This type of servlet container must support lookups of such objects and
calls made to those objects when performed on a thread managed by the servlet
container. This type of servlet container should support this behavior when
performed on threads created by the developer, but are not currently required to do
so. Such a requirement will be added in the next version of this specification.
Developers are cautioned that depending on this capability for application-created
threads is not recommended, as it is non-portable.
nal Version

Security 152
SRV.14.3 Security

This section details the additional security requirements of a Java EE technology
compliant web container.

SRV.14.3.1 Propagation of Security Identity in EJBTM Calls

A security identity, or principal, must always be provided for use in a call to an
enterprise bean. The default mode in calls to enterprise beans from web applications
is for the security identity of a web user to be propagated to the EJB container.

In other scenarios, web containers are required to allow web users that are not
known to the web container or to the EJB container to make calls:

• Web containers are required to support access to web resources by clients that
have not authenticated themselves to the container. This is the common mode
of access to web resources on the Internet.

• Application code may be the sole processor of signon and customization of
data based on caller identity.

In these scenarios, a web application deployment descriptor may specify a
run-as element. When it is specified, the container must propagate the security
identity for any call from a servlet to the EJB layer in terms of the security role
name defined in the run-as element. The security role name must be one of the
security role names defined for the web application.

For web containers running as part of a Java EE platform, the use of run-as
elements must be supported both for calls to EJB components within the same
Java EE application, and for calls to EJB components deployed in other Java EE
applications.

SRV.14.4 Deployment

This section details the deployment descriptor, packaging and deployment
descriptor processing requirements of a Java EE technology compliant container.

SRV.14.4.1 Deployment Descriptor Elements

The following additional elements exist in the Web application deployment
descriptor to meet the requirements of Web containers that are JSP pages enabled

JAVA ENTERPRISE EDITION 5 CONTAINERS

Fi

153
or part of a Java EE application server. They are not required to be supported by
containers wishing to support only the servlet specification:

• jsp-config

• Syntax for looking up JNDI objects (env-entry, ejb-ref, ejb-local-ref, re-
source-ref, resource-env-ref)

• Syntax for specifying the message destination (message-destination, mes-
sage-destination-ref)

• Reference to a Web service (service-ref)

The syntax for these elements is now held in the JavaServer Pages specification
version 2.1, and the Java EE specification version 5.0.

SRV.14.4.2 Packaging and Deployment of JAX-WS Components

Web containers may choose to support running components written to implement a
Web service endpoint as defined by the JAX-RPC and/or JAX-WS specifications.
Web containers embedded in a JavaEE conformant implementation are required to
support JAX-RPC and JAX-WS web service components. This section describes
the packaging and deployment model for such JAX-RPC and JAX-WS Web
component implementations.

JSR-109 [http://jcp.org/jsr/detail/109.jsp] defines the model for
packaging a Web service interface with its associated WSDL description and
associated classes. It defines a mechanism for JAX-WS and JAX-RPC enabled
Web containers to link to a component that implements this Web service. A JAX-
WS or JAX-RPC Web service implementation component uses the APIs defined
by the JAX-WS and/or JAX-RPC specifications, which defines its contract with
the JAX-WS and/or JAX-WS enabled Web containers. It is packaged into the
WAR file. The Web service developer makes a declaration of this component
using the usual <servlet> declaration.

JAX-WS and JAX-RPC enabled Web containers must support the developer
in using the Web deployment descriptor to define the following information for
the endpoint implementation component, using the same syntax as for HTTP
Servlet components using the servlet element. The child elements are are used
to specify endpoint information in the following way:
nal Version

Deployment 154
• the servlet-name element defines a logical name which may be used to lo-
cate this endpoint description among the other Web components in the WAR

• the servlet-class element provides the fully qualified Java class name of
this endpoint implementation

• the description element(s) may be used to describe the component and
may be displayed in a tool

• the load-on-startup element specifies the order in which the component is
initialized relative to other Web components in the Web container

• the security-role-ref element may be used to test whether the authenticat-
ed user is in a logical security role

• the run-as element may be used to override the identity propagated to EJBs
called by this component

Any servlet initialization parameters defined by the developer for this Web
component may be ignored by the container. Additionally, the JAX-WS and JAX-
RPC enabled Web component inherits the traditional Web component
mechanisms for defining the following information:

• mapping of the component to the Web container’s URL namespace using the
servlet mapping technique

• authorization constraints on Web components using security constraints

• the ability to use servlet filters to provide low-level byte stream support for
manipulating JAX-WS and/or JAX-RPC messages using the filter mapping
technique

• the timeout characteristics of any HTTP sessions that are associated with the
component

• links to Java EE objects stored in the JNDI namespace

SRV.14.4.3 Rules for Processing the Deployment Descriptor

The containers and tools that are part of Java EE technology-compliant
implementation are required to validate the deployment descriptor against the XML
schema for structural correctness. The validation is recommended, but not required
for the web containers and tools that are not part of a Java EE technology compliant
implementation.

JAVA ENTERPRISE EDITION 5 CONTAINERS

Fi

155
SRV.14.5 Annotations and Resource Injection

The Java Metadata specification (JSR-175), which is part of J2SE 5.0 and greater,
provides a means of specifying configuration data in Java code. Metadata in Java
code is also referred to as annotations. In Java EE annotations are used to declare
dependencies on external resources and configuration data in Java code without the
need to define that data in a configuration file.

This section describes the behavior of annotations and resource injection in a
Java EE technology compliant Servlet containers. This section expands on the
Java EE 5 specification section 5 titled “Resources, Naming, and Injection.”

Annotations must be supported on the following container managed classes
that implement the following interfaces and are declared in the web application
deployment descriptor.

Classes other than the those above declaring annotations described in this
section are not required to be injected with resource references.

References must be injected prior to any lifecycle methods being called and
the component instance being made available the the application.

In a web application, classes using resource injection will have their
annotations processed only if they are located in the WEB-INF/classes directory,
or if they are packaged in a jar file located in WEB-INF/lib. Containers may
optionally process resource injection annotations for classes found elsewhere in
the application’s classpath.

The web application deployment descriptor contains a new “metadata-
complete” attribute on the web-app element. The “metadata-complete” attribute

Table 14.1: Components and Interfaces supporting Annotations and
Dependency Injection

Component
Type Classes implementing the following interfaces

Servlets javax.servlet.Servlet

Filters javax.servlet.Filter

Listeners

javax.servlet.ServletContextListener
javax.servlet.ServletContextAttributeListener
javax.servlet.ServletRequestListener
javax.servlet.ServletRequestAttributeListener
javax.servlet.http.HttpSessionListener
javax.servlet.http.HttpSessionAttributeListener
nal Version

Annotations and Resource Injection 156
defines whether the web descriptor is complete, or whether the class files of the jar
file should be examined for annotations that specify deployment information. If
“metadata-complete” is set to "true", the deployment tool must ignore any Servlet
annotations present in the class files of the application. If the full attribute is not
specified or is set to "false", the deployment tool must examine the class files of
the application for annotations, as previously specified.

Following are the annotations that are required by a Java EE technology
compliant web container.

SRV.14.5.1 @DeclaresRoles

This annotation is used to define the security roles that comprise the security model
of the application. This annotation is specified on a class, and it typically would be
used to define roles that could be tested (i.e., by calling isUserInRole) from
within the methods of the annotated class. It could also be used to declare
application roles that are not implicitly declared as the result of their use in a
@DeclaresRoles annotation on the class implementing the javax.serv-
let.Servlet interface or a subclass thereof.

 Following is an example of how this annotation would be used.

 @DeclaresRoles("BusinessAdmin")
 public class CalculatorServlet {
 //...
 }

Declaring @DeclaresRoles ("BusinessAdmin") is equivalent to defining the
following in the web.xml.

 <web-app>
 <security-role>
 <role-name>BusinessAdmin</role-name>
 </security-role>
 </web-app>

This annotation is not used to relink application roles to other roles. When
such linking is necessary, it is accomplished by defining an appropriate security-
role-ref in the associated deployment descriptor.

When a call is made to isUserInRole from the annotated class, the caller
identity associated with the invocation of the class is tested for membership in the
role with the same name as the argument to isCallerInRole. If a security-

JAVA ENTERPRISE EDITION 5 CONTAINERS

Fi

157
role-ref has been defined for the argument role-name the caller is tested for
membership in the role mapped to the role-name.

For further details on the @DeclaresRoles annotation refer to the Common
Annotations for the JavaTM PlatformTM specifcation (JSR 250) section 2.10.

SRV.14.5.2 @EJB Annotation

Enterprise JavaBeansTM 3.0 (EJB) components may referenced from a web
component using the @EJB annotation. The @EJB annotation provides the equivalent
functionality of declaring the ejb-ref or ejb-local-ref elements in the
deployment descriptor. Fields that have a corresponding @EJB annotation are
injected with the a reference to the corresponding EJB component.

An example:

@EJB private ShoppingCart myCart;

In the case above a reference to the EJB component “myCart” is injected as the
value of the private field “myCart” prior to the classs declaring the injection being
made available.

The behavior the @EJB annotation is further detailed in section 15.5 of the
EJB 3.0 specification (JSR220).

SRV.14.5.3 @EJBs Annotation

The @EJBs annotation allows more than one @EJB annotations to be declared on a
single resource.

An example:

@EJBs({@EJB(Calculator), @EJB(ShoppingCart)})
public class ShoppingCartServlet {
//...
}
The example above the EJB components ShoppingCart and Calculator

are made available to ShoppingCartServlet. The ShoppingCartServlet
must still look up the references using JNDI but the EJBs do not need to declared
in the web.xml file.
nal Version

Annotations and Resource Injection 158
The @EJBs annotation is discussed in further detailed in section 15.5 of the
EJB 3.0 specification (JSR220).

SRV.14.5.4 @Resource Annotation

The @Resource annotation is used to declare a reference to a resource such as a
data source, Java Messaging Service (JMS) destination, or environment entry. This
annotation is equivalent to declaring a resource-ref, message-destination-
ref or env-ref, or resource-env-ref element in the deployment descriptor.

The @Resource annotation is specified on a class, method or field. The
container is responsible injecting references to resources declared by the
@Resource annotation and mapping it to the proper JNDI resources. See the Java
EE Specification Chapter 5 for further details.

An example of a @Resource annotation follows:

@Resource private javax.sql.DataSource catalogDS;
public getProductsByCategory() {
 // get a connection and execute the query
 Connection conn = catalogDS.getConnection();
..
}

In the example code above, a servlet, filter, or listener declares a field cata-
logDS of type javax.sql.DataSource for which the reference to the data
source is injected by the container prior to the component being made available to
the application. The data source JNDI mapping is inferred from the field name
“catalogDS” and type (javax.sql.DataSource). Moreover, the catalogDS
resource no longer needs to be defined in the deployment descriptor.

The semantics of the @Resource annotation are further detailed in the
Common Annotations for the JavaTM PlatformTM specifcation (JSR 250) Section
2.3 and Java EE Specification specification 5.2.3.

SRV.14.5.5 @PersistenceContext Annotation

This annotation specifies the container managed entity manager for referenced
persistence units.

An example:

@PersistenceContext (type=EXTENDED)

JAVA ENTERPRISE EDITION 5 CONTAINERS

Fi

159
EntityManager em;

The behavior the @PersistenceContext annotation is further detailed in
section 8.4.1 of the Java Persistence document which is part of the EJB 3.0
specification (JSR220) and in section 15.11 of the EJB 3.0 specification.

SRV.14.5.6 @PersistenceContexts Annotation

The PersistenceContexts annotation allows more than one @PersistenceContext
to be declared on a resource. The behavior the @PersistenceContext
annotation is further detailed in section 8.4.1 of the Java Persistence document
which is part of the EJB 3.0 specification (JSR220) and in section 15.11 of the
EJB 3.0 specification.

SRV.14.5.7 @PersistenceUnit Annotation

The @PersistenceUnit annotation provides Enterprise Java Beans components
declared in a servlet a reference to a entity manager factory. The entity manager
factory is bound to a separate persistence.xml configuration file as described in
section 5.10 of the EJB 3.0 specification (JSR220).

An example:

@PersistenceUnit
EntityManagerFactory emf;

The behavior the @PersistenceUnit annotation is further detailed in section
8.4.2 of the Java Persistence document which is part of the EJB 3.0 specification
(JSR220) and in section 15.10 of the EJB 3.0 specification.

SRV.14.5.8 @PersistenceUnits Annotation

This annotation allows for more than one @PersistentUnit annotations to be
declared on a resource. The behavior the @PersistenceUnits annotation is
further detailed in section 8.4.2 of the Java Persistence document which is part of the
EJB 3.0 specification (JSR220) and in section 15.10 of the EJB 3.0 specification..
nal Version

Annotations and Resource Injection 160
SRV.14.5.9 @PostConstruct Annotation

The @PostConstruct annotation is declared on a method that does not take
any arguments, and must not throw any checked expections. The return value must
be void. The method MUST be called after the resources injections have been
completed and before any lifecycle methods on the component are called.

An example:

@PostConstruct
public void postConstruct() {

...
}

The example above shows a method using the @PostConstruct annotation.

The @PostConstruct annnotation MUST be supported by all classes that
support dependency injection and called even if the class does not request any
reources to be injected. If the method throws an unchecked exception the class
MUST not be put into service and no method on that instance can be called.

Refer to the Java EE specification section 2.5 and the Common Annotations
for the JavaTM PlatformTM specifcation section 2.5 for more details.

SRV.14.5.10 @PreDestroy Annotation

The @PreDestroy annotation is declared on a method of a container managed
component. The method is called prior to component being reomvoed by the
container.

An example:

@PreDestroy
public void cleanup() {

// clean up any open resources
...

}

The method annotated with @PreDestroy must return void and must not
throw a checked exception. The method may be public, protected, package private
or private. The method must not be static however it may be final.

JAVA ENTERPRISE EDITION 5 CONTAINERS

Fi

161
Refer to the JSR 250 section 2.6 for more details.

SRV.14.5.11 @Resources Annotation

The @Resources annotation acts as a container for multiple @Resource
annotations because the Java MetaData specification does not allow for multiple
annotations with the same name on the same annotation target.

An example:

@Resources ({
@Resource(name=”myDB” type=javax.sql.DataSource),
@Resource(name=”myMQ” type=javax.jms.ConnectionFactory)
})
public class CalculatorServlet {
//...
}

In the example above a JMS connection factory and a data source are made
available to the CalculatorServlet by means of an @Resources annotation.

The semantics of the @Resources annotation are further detailed in the
Common Annotations for the JavaTM PlatformTM specifcation (JSR 250) section
2.4.

SRV.14.5.12 @RunAs Annotation

The @RunAs annotation is equivalent to the run-as element in the deployment
descriptor. The @RunAs annotation may only be defined in classes implementing the
javax.servlet.Servlet interface or a subclass thereof.

An example:

@RunAs(“Admin”)
public class CalculatorServlet {

@EJB private ShoppingCart myCart;

public void doGet(HttpServletRequest, req, HttpServletResponse res) {
//....

myCart.getTotal();
nal Version

Annotations and Resource Injection 162
//....

}
}

//....
}

The @RunAs(“Admin”) statement would be equivalent to defining the
following in the web.xml.

<servlet>
<servlet-name>CalculatorServlet</servlet-name>
<run-as>Admin</run-as>

</servlet>

The example above shows how a servlet uses the @RunAs annotation to
propagate the security identity “Admin” to an EJB component when the
myCart.getTotal() method is called. For further details on propagating
identities see SRV.14.3.1.

For further details on the @RunAs annotation refer to the Common
Annotations for the JavaTM PlatformTM specifcation (JSR 250) section 2.6.

SRV.14.5.13 @WebServiceRef Annotation

The @WebServiceRef annotation provides a reference to a web service in a web
component in same way as a resource-ref element would in the deployment
descriptor.

An example:

@WebServiceRef private MyService service;

In this example a reference to the web service “MyService” will be injected
to the class declaring the annotation.

This annotation and behavior are further detailed in the JAX-WS
Specification (JSR 224) section 7.

SRV.14.5.14 @WebServiceRefs Annotation

This annotation allows for more than one @WebServiceRef annotations to be
declared on a single resource. The behavior of this annotation is further detailed in
the JAX-WS Specification (JSR 224) section 7.

JAVA ENTERPRISE EDITION 5 CONTAINERS

Fi

163
nal Version

C H A P T E R SRV.15

javax.servlet

This chapter describes the javax.servlet package. The chapter includes content that
is generated automatically from javadoc embedded in the actual Java classes and
interfaces. This allows the creation of a single, authoritative, specification docu-
ment.

SRV.15.1 Generic Servlet Interfaces and Classes

The javax.servlet package contains a number of classes and interfaces that describe
and define the contracts between a servlet class and the runtime environment pro-
vided for an instance of such a class by a conforming servlet container.

The Servlet interface is the central abstraction of the servlet API. All servlets
implement this interface either directly, or more commonly, by extending a class
that implements the interface. The two classes in the servlet API that implement
the Servlet interface are GenericServlet and HttpServlet . For most purposes,
developers will extend HttpServlet to implement their servlets while
implementing web applications employing the HTTP protocol.

The basic Servlet interface defines a service method for handling client
requests. This method is called for each request that the servlet container routes to
an instance of a servlet.

SRV.15.2 The javax.servlet package

The following section summarizes the javax.servlet package:
164

JAVAX.SERVLET

Fi

165
Class Summary

Interfaces

Filter A filter is an object that performs filtering tasks
on either the request to a resource (a servlet or
static content), or on the response from a
resource, or both.

 Filters perform filtering in the doFilter
method.

FilterChain A FilterChain is an object provided by the
servlet container to the developer giving a view
into the invocation chain of a filtered request
for a resource.

FilterConfig A filter configuration object used by a servlet
container to pass information to a filter during
initialization.

RequestDispatcher Defines an object that receives requests from
the client and sends them to any resource (such
as a servlet, HTML file, or JSP file) on the
server.

Servlet Defines methods that all servlets must
implement.

ServletConfig A servlet configuration object used by a servlet
container to pass information to a servlet
during initialization.

ServletContext Defines a set of methods that a servlet uses to
communicate with its servlet container, for
example, to get the MIME type of a file,
dispatch requests, or write to a log file.

ServletContextAt-
tributeListener

Implementations of this interface receive
notifications of changes to the attribute list on
the servlet context of a web application.

ServletContextListener Implementations of this interface receive
notifications about changes to the servlet
context of the web application they are part of.

ServletRequest Defines an object to provide client request
information to a servlet.

ServletRequestAt-
tributeListener

A ServletRequestAttributeListener can be
implemented by the developer interested in
being notified of request attribute changes.
nal Version

The javax.servlet package 166
ServletRequestListener A ServletRequestListener can be implemented
by the developer interested in being notified of
requests coming in and out of scope in a web
component.

ServletResponse Defines an object to assist a servlet in sending a
response to the client.

SingleThreadModel Ensures that servlets handle only one request at a
time.

Classes

GenericServlet Defines a generic, protocol-independent servlet.
ServletContextAttribu-
teEvent

This is the event class for notifications about
changes to the attributes of the servlet context
of a web application.

ServletContextEvent This is the event class for notifications about
changes to the servlet context of a web
application.

ServletInputStream Provides an input stream for reading binary
data from a client request, including an efficient
readLine method for reading data one line at a
time.

ServletOutputStream Provides an output stream for sending binary
data to the client.

ServletRequestAttribu-
teEvent

This is the event class for notifications of
changes to the attributes of ServletRequest in
an application.

ServletRequestEvent Events of this kind indicate lifecycle events for
a ServletRequest.

ServletRequestWrapper Provides a convenient implementation of the
ServletRequest interface that can be subclassed
by developers wishing to adapt the request to a
Servlet.

ServletResponseWrapper Provides a convenient implementation of the
ServletResponse interface that can be subclassed
by developers wishing to adapt the response
from a Servlet.

Exceptions

Class Summary

JAVAX.SERVLET

Fi

167
SRV.15.2.1 Filter

public interface Filter

A filter is an object that performs filtering tasks on either the request to a resource
(a servlet or static content), or on the response from a resource, or both.

 Filters perform filtering in the doFilter method. Every Filter has access to a
FilterConfig object from which it can obtain its initialization parameters, a refer-
ence to the ServletContext which it can use, for example, to load resources
needed for filtering tasks.

Filters are configured in the deployment descriptor of a web application

Examples that have been identified for this design are
 1) Authentication Filters
 2) Logging and Auditing Filters
 3) Image conversion Filters
 4) Data compression Filters
 5) Encryption Filters
 6) Tokenizing Filters
 7) Filters that trigger resource access events
 8) XSL/T filters
 9) Mime-type chain Filter

Since: Servlet 2.3

SRV.15.2.1.1 Methods

destroy()
public void destroy()

Called by the web container to indicate to a filter that it is being taken out of
service. This method is only called once all threads within the filter’s doFilter
method have exited or after a timeout period has passed. After the web con-
tainer calls this method, it will not call the doFilter method again on this

ServletException Defines a general exception a servlet can throw
when it encounters difficulty.

UnavailableException Defines an exception that a servlet or filter
throws to indicate that it is permanently or tem-
porarily unavailable.

Class Summary
nal Version

The javax.servlet package 168
instance of the filter.

 This method gives the filter an opportunity to clean up any resources that are
being held (for example, memory, file handles, threads) and make sure that
any persistent state is synchronized with the filter’s current state in memory.

doFilter(ServletRequest, ServletResponse, FilterChain)
public void doFilter(ServletRequest request,

ServletResponse response, FilterChain chain)
throws IOException, ServletException

The doFilter method of the Filter is called by the container each time a
request/response pair is passed through the chain due to a client request for a
resource at the end of the chain. The FilterChain passed in to this method
allows the Filter to pass on the request and response to the next entity in the
chain.

A typical implementation of this method would follow the following pattern:-
 1. Examine the request
 2. Optionally wrap the request object with a custom implementation to filter
content or headers for input filtering
 3. Optionally wrap the response object with a custom implementation to fil-
ter content or headers for output filtering
 4. a) Either invoke the next entity in the chain using the FilterChain object
(chain.doFilter()),
 4. b) or not pass on the request/response pair to the next entity in the filter
chain to block the request processing
 5. Directly set headers on the response after invocation of the next entity in
the filter chain.

Throws:
ServletException, IOException

init(FilterConfig)
public void init(FilterConfig filterConfig)

throws ServletException

Called by the web container to indicate to a filter that it is being placed into
service. The servlet container calls the init method exactly once after instanti-
ating the filter. The init method must complete successfully before the filter is
asked to do any filtering work.

 The web container cannot place the filter into service if the init method either
 1.Throws a ServletException
 2.Does not return within a time period defined by the web container

JAVAX.SERVLET

Fi

169
Throws:
ServletException

SRV.15.2.2 FilterChain

public interface FilterChain

A FilterChain is an object provided by the servlet container to the developer giv-
ing a view into the invocation chain of a filtered request for a resource. Filters use
the FilterChain to invoke the next filter in the chain, or if the calling filter is the
last filter in the chain, to invoke the resource at the end of the chain.

Since: Servlet 2.3

See Also: Filter

SRV.15.2.2.1 Methods

doFilter(ServletRequest, ServletResponse)
public void doFilter(ServletRequest request,

ServletResponse response)
throws IOException, ServletException

Causes the next filter in the chain to be invoked, or if the calling filter is the
last filter in the chain, causes the resource at the end of the chain to be
invoked.

Parameters:
request - the request to pass along the chain.

response - the response to pass along the chain.

Throws:
ServletException, IOException

Since: 2.3

SRV.15.2.3 FilterConfig

public interface FilterConfig

A filter configuration object used by a servlet container to pass information to a
filter during initialization.

Since: Servlet 2.3

See Also: Filter
nal Version

The javax.servlet package 170
SRV.15.2.3.1 Methods

getFilterName()
public java.lang.String getFilterName()

Returns the filter-name of this filter as defined in the deployment descriptor.

getInitParameter(String)
public java.lang.String getInitParameter(java.lang.String name)

Returns a String containing the value of the named initialization parameter,
or null if the parameter does not exist.

Parameters:
name - a String specifying the name of the initialization parameter

Returns: a String containing the value of the initialization parameter

getInitParameterNames()
public java.util.Enumeration getInitParameterNames()

Returns the names of the filter’s initialization parameters as an Enumeration
of String objects, or an empty Enumeration if the filter has no initialization
parameters.

Returns: an Enumeration of String objects containing the names of the
filter’s initialization parameters

getServletContext()
public ServletContext getServletContext()

Returns a reference to the ServletContext in which the caller is executing.

Returns: a ServletContext object, used by the caller to interact with its
servlet container

See Also: ServletContext

SRV.15.2.4 GenericServlet

public abstract class GenericServlet implements
javax.servlet.Servlet, javax.servlet.ServletConfig,
java.io.Serializable

All Implemented Interfaces: java.io.Serializable, Servlet, ServletCon-
fig

Direct Known Subclasses: javax.servlet.http.HttpServlet

JAVAX.SERVLET

Fi

171
Defines a generic, protocol-independent servlet. To write an HTTP servlet for use
on the Web, extend javax.servlet.http.HttpServlet instead.

GenericServlet implements the Servlet and ServletConfig interfaces.
GenericServlet may be directly extended by a servlet, although it’s more com-
mon to extend a protocol-specific subclass such as HttpServlet.

GenericServlet makes writing servlets easier. It provides simple versions of the
lifecycle methods init and destroy and of the methods in the ServletConfig
interface. GenericServlet also implements the log method, declared in the
ServletContext interface.

To write a generic servlet, you need only override the abstract service method.

SRV.15.2.4.1 Constructors

GenericServlet()
public GenericServlet()

Does nothing. All of the servlet initialization is done by one of the init
methods.

SRV.15.2.4.2 Methods

destroy()
public void destroy()

Called by the servlet container to indicate to a servlet that the servlet is being
taken out of service. See Servlet.destroy() .

Specified By: Servlet.destroy() in interface Servlet

getInitParameter(String)
public java.lang.String getInitParameter(java.lang.String name)

Returns a String containing the value of the named initialization parameter,
or null if the parameter does not exist. See
ServletConfig.getInitParameter(String) .

This method is supplied for convenience. It gets the value of the named
parameter from the servlet’s ServletConfig object.

Specified By: ServletConfig.getInitParameter(String) in interface
ServletConfig

Parameters:
name - a String specifying the name of the initialization parameter
nal Version

The javax.servlet package 172
Returns: String a String containing the value of the initialization parameter

getInitParameterNames()
public java.util.Enumeration getInitParameterNames()

Returns the names of the servlet’s initialization parameters as an
Enumeration of String objects, or an empty Enumeration if the servlet has
no initialization parameters. See
ServletConfig.getInitParameterNames() .

This method is supplied for convenience. It gets the parameter names from
the servlet’s ServletConfig object.

Specified By: ServletConfig.getInitParameterNames() in interface
ServletConfig

Returns: Enumeration an enumeration of String objects containing the
names of the servlet’s initialization parameters

getServletConfig()
public ServletConfig getServletConfig()

Returns this servlet’s ServletConfig object.

Specified By: Servlet.getServletConfig() in interface Servlet

Returns: ServletConfig the ServletConfig object that initialized this
servlet

getServletContext()
public ServletContext getServletContext()

Returns a reference to the ServletContext in which this servlet is running.
See ServletConfig.getServletContext() .

This method is supplied for convenience. It gets the context from the servlet’s
ServletConfig object.

Specified By: ServletConfig.getServletContext() in interface
ServletConfig

Returns: ServletContext the ServletContext object passed to this servlet
by the init method

getServletInfo()
public java.lang.String getServletInfo()

JAVAX.SERVLET

Fi

173
Returns information about the servlet, such as author, version, and copyright.
By default, this method returns an empty string. Override this method to have
it return a meaningful value. See Servlet.getServletInfo() .

Specified By: Servlet.getServletInfo() in interface Servlet

Returns: String information about this servlet, by default an empty string

getServletName()
public java.lang.String getServletName()

Returns the name of this servlet instance. See
ServletConfig.getServletName() .

Specified By: ServletConfig.getServletName() in interface
ServletConfig

Returns: the name of this servlet instance

init()
public void init()

throws ServletException

A convenience method which can be overridden so that there’s no need to call
super.init(config).

Instead of overriding init(ServletConfig) , simply override this method
and it will be called by GenericServlet.init(ServletConfig config).
The ServletConfig object can still be retrieved via getServletConfig() .

Throws:
ServletException - if an exception occurs that interrupts the servlet’s
normal operation

init(ServletConfig)
public void init(ServletConfig config)

throws ServletException

Called by the servlet container to indicate to a servlet that the servlet is being
placed into service. See Servlet.init(ServletConfig) .

This implementation stores the ServletConfig object it receives from the
servlet container for later use. When overriding this form of the method, call
super.init(config).

Specified By: Servlet.init(ServletConfig) in interface Servlet

Parameters:
config - the ServletConfig object that contains configutation information
for this servlet
nal Version

The javax.servlet package 174
Throws:
ServletException - if an exception occurs that interrupts the servlet’s
normal operation

See Also: UnavailableException

log(String)
public void log(java.lang.String msg)

Writes the specified message to a servlet log file, prepended by the servlet’s
name. See ServletContext.log(String) .

Parameters:
msg - a String specifying the message to be written to the log file

log(String, Throwable)
public void log(java.lang.String message, java.lang.Throwable t)

Writes an explanatory message and a stack trace for a given Throwable
exception to the servlet log file, prepended by the servlet’s name. See Serv-
letContext.log(String, Throwable) .

Parameters:
message - a String that describes the error or exception

t - the java.lang.Throwable error or exception

service(ServletRequest, ServletResponse)
public abstract void service(ServletRequest req,

ServletResponse res)
throws ServletException, IOException

Called by the servlet container to allow the servlet to respond to a request.
See Servlet.service(ServletRequest, ServletResponse) .

This method is declared abstract so subclasses, such as HttpServlet, must
override it.

Specified By: Servlet.service(ServletRequest, ServletResponse) in
interface Servlet

Parameters:
req - the ServletRequest object that contains the client’s request

res - the ServletResponse object that will contain the servlet’s response

Throws:
ServletException - if an exception occurs that interferes with the servlet’s
normal operation occurred

IOException - if an input or output exception occurs

JAVAX.SERVLET

Fi

175
SRV.15.2.5 RequestDispatcher

public interface RequestDispatcher

Defines an object that receives requests from the client and sends them to any
resource (such as a servlet, HTML file, or JSP file) on the server. The servlet con-
tainer creates the RequestDispatcher object, which is used as a wrapper around a
server resource located at a particular path or given by a particular name.

This interface is intended to wrap servlets, but a servlet container can create
RequestDispatcher objects to wrap any type of resource.

See Also: ServletContext.getRequestDispatcher(String), ServletCon-
text.getNamedDispatcher(String), ServletRequest.getRe-
questDispatcher(String)

SRV.15.2.5.1 Methods

forward(ServletRequest, ServletResponse)
public void forward(ServletRequest request,

ServletResponse response)
throws ServletException, IOException

Forwards a request from a servlet to another resource (servlet, JSP file, or
HTML file) on the server. This method allows one servlet to do preliminary
processing of a request and another resource to generate the response.

For a RequestDispatcher obtained via getRequestDispatcher(), the
ServletRequest object has its path elements and parameters adjusted to
match the path of the target resource.

forward should be called before the response has been committed to the cli-
ent (before response body output has been flushed). If the response already
has been committed, this method throws an IllegalStateException.
Uncommitted output in the response buffer is automatically cleared before
the forward.

The request and response parameters must be either the same objects as were
passed to the calling servlet’s service method or be subclasses of the
ServletRequestWrapper or ServletResponseWrapper classes that wrap
them.

Parameters:
request - a ServletRequest object that represents the request the client
makes of the servlet

response - a ServletResponse object that represents the response the
servlet returns to the client
nal Version

The javax.servlet package 176
Throws:
ServletException - if the target resource throws this exception

IOException - if the target resource throws this exception

IllegalStateException - if the response was already committed

include(ServletRequest, ServletResponse)
public void include(ServletRequest request,

ServletResponse response)
throws ServletException, IOException

Includes the content of a resource (servlet, JSP page, HTML file) in the
response. In essence, this method enables programmatic server-side includes.

The ServletResponse object has its path elements and parameters remain
unchanged from the caller’s. The included servlet cannot change the response
status code or set headers; any attempt to make a change is ignored.

The request and response parameters must be either the same objects as were
passed to the calling servlet’s service method or be subclasses of the
ServletRequestWrapper or ServletResponseWrapper classes that wrap
them.

Parameters:
request - a ServletRequest object that contains the client’s request

response - a ServletResponse object that contains the servlet’s response

Throws:
ServletException - if the included resource throws this exception

IOException - if the included resource throws this exception

SRV.15.2.6 Servlet

public interface Servlet

All Known Implementing Classes: GenericServlet

Defines methods that all servlets must implement.

A servlet is a small Java program that runs within a Web server. Servlets receive
and respond to requests from Web clients, usually across HTTP, the HyperText
Transfer Protocol.

To implement this interface, you can write a generic servlet that extends
javax.servlet.GenericServlet or an HTTP servlet that extends
javax.servlet.http.HttpServlet.

JAVAX.SERVLET

Fi

177
This interface defines methods to initialize a servlet, to service requests, and to
remove a servlet from the server. These are known as life-cycle methods and are
called in the following sequence:

1.The servlet is constructed, then initialized with the init method.

2.Any calls from clients to the service method are handled.

3.The servlet is taken out of service, then destroyed with the destroy method,
then garbage collected and finalized.

In addition to the life-cycle methods, this interface provides the getServlet-
Config method, which the servlet can use to get any startup information, and the
getServletInfo method, which allows the servlet to return basic information
about itself, such as author, version, and copyright.

See Also: GenericServlet, javax.servlet.http.HttpServlet

SRV.15.2.6.1 Methods

destroy()
public void destroy()

Called by the servlet container to indicate to a servlet that the servlet is being
taken out of service. This method is only called once all threads within the
servlet’s service method have exited or after a timeout period has passed.
After the servlet container calls this method, it will not call the service
method again on this servlet.

This method gives the servlet an opportunity to clean up any resources that
are being held (for example, memory, file handles, threads) and make sure
that any persistent state is synchronized with the servlet’s current state in
memory.

getServletConfig()
public ServletConfig getServletConfig()

Returns a ServletConfig object, which contains initialization and startup
parameters for this servlet. The ServletConfig object returned is the one
passed to the init method.

Implementations of this interface are responsible for storing the Servlet-
Config object so that this method can return it. The GenericServlet class,
which implements this interface, already does this.

Returns: the ServletConfig object that initializes this servlet

See Also: init(ServletConfig)
nal Version

The javax.servlet package 178
getServletInfo()
public java.lang.String getServletInfo()

Returns information about the servlet, such as author, version, and copyright.

The string that this method returns should be plain text and not markup of any
kind (such as HTML, XML, etc.).

Returns: a String containing servlet information

init(ServletConfig)
public void init(ServletConfig config)

throws ServletException

Called by the servlet container to indicate to a servlet that the servlet is being
placed into service.

The servlet container calls the init method exactly once after instantiating
the servlet. The init method must complete successfully before the servlet
can receive any requests.

The servlet container cannot place the servlet into service if the init method

1. Throws a ServletException

2. Does not return within a time period defined by the Web server

Parameters:
config - a ServletConfig object containing the servlet’s configuration and
initialization parameters

Throws:
ServletException - if an exception has occurred that interferes with the
servlet’s normal operation

See Also: UnavailableException, getServletConfig()

service(ServletRequest, ServletResponse)
public void service(ServletRequest req, ServletResponse res)

throws ServletException, IOException

Called by the servlet container to allow the servlet to respond to a request.

This method is only called after the servlet’s init() method has completed
successfully.

The status code of the response always should be set for a servlet that throws
or sends an error.

Servlets typically run inside multithreaded servlet containers that can handle
multiple requests concurrently. Developers must be aware to synchronize
access to any shared resources such as files, network connections, and as well

JAVAX.SERVLET

Fi

179
as the servlet’s class and instance variables. More information on multi-
threaded programming in Java is available in the Java tutorial on multi-
threaded programming (http://java.sun.com/Series/Tutorial/java/threads/mul-
tithreaded.html).

Parameters:
req - the ServletRequest object that contains the client’s request

res - the ServletResponse object that contains the servlet’s response

Throws:
ServletException - if an exception occurs that interferes with the servlet’s
normal operation

IOException - if an input or output exception occurs

SRV.15.2.7 ServletConfig

public interface ServletConfig

All Known Implementing Classes: GenericServlet

A servlet configuration object used by a servlet container to pass information to a
servlet during initialization.

SRV.15.2.7.1 Methods

getInitParameter(String)
public java.lang.String getInitParameter(java.lang.String name)

Returns a String containing the value of the named initialization parameter,
or null if the parameter does not exist.

Parameters:
name - a String specifying the name of the initialization parameter

Returns: a String containing the value of the initialization parameter

getInitParameterNames()
public java.util.Enumeration getInitParameterNames()

Returns the names of the servlet’s initialization parameters as an
Enumeration of String objects, or an empty Enumeration if the servlet has
no initialization parameters.

Returns: an Enumeration of String objects containing the names of the
servlet’s initialization parameters

getServletContext()
nal Version

The javax.servlet package 180
public ServletContext getServletContext()

Returns a reference to the ServletContext in which the caller is executing.

Returns: a ServletContext object, used by the caller to interact with its
servlet container

See Also: ServletContext

getServletName()
public java.lang.String getServletName()

Returns the name of this servlet instance. The name may be provided via
server administration, assigned in the web application deployment descriptor,
or for an unregistered (and thus unnamed) servlet instance it will be the serv-
let’s class name.

Returns: the name of the servlet instance

SRV.15.2.8 ServletContext

public interface ServletContext

Defines a set of methods that a servlet uses to communicate with its servlet con-
tainer, for example, to get the MIME type of a file, dispatch requests, or write to a
log file.

There is one context per “web application” per Java Virtual Machine. (A “web
application” is a collection of servlets and content installed under a specific sub-
set of the server’s URL namespace such as /catalog and possibly installed via a
.war file.)

In the case of a web application marked “distributed” in its deployment descrip-
tor, there will be one context instance for each virtual machine. In this situation,
the context cannot be used as a location to share global information (because the
information won’t be truly global). Use an external resource like a database
instead.

The ServletContext object is contained within the ServletConfig object,
which the Web server provides the servlet when the servlet is initialized.

See Also: Servlet.getServletConfig(), ServletConfig.getServletCon-
text()

SRV.15.2.8.1 Methods

getAttribute(String)
public java.lang.Object getAttribute(java.lang.String name)

JAVAX.SERVLET

Fi

181
Returns the servlet container attribute with the given name, or null if there is
no attribute by that name. An attribute allows a servlet container to give the
servlet additional information not already provided by this interface. See your
server documentation for information about its attributes. A list of supported
attributes can be retrieved using getAttributeNames.

The attribute is returned as a java.lang.Object or some subclass. Attribute
names should follow the same convention as package names. The Java Serv-
let API specification reserves names matching java.*, javax.*, and sun.*.

Parameters:
name - a String specifying the name of the attribute

Returns: an Object containing the value of the attribute, or null if no
attribute exists matching the given name

See Also: getAttributeNames()

getAttributeNames()
public java.util.Enumeration getAttributeNames()

Returns an Enumeration containing the attribute names available within this
servlet context. Use the getAttribute(String) method with an attribute
name to get the value of an attribute.

Returns: an Enumeration of attribute names

See Also: getAttribute(String)

getContext(String)
public ServletContext getContext(java.lang.String uripath)

Returns a ServletContext object that corresponds to a specified URL on the
server.

This method allows servlets to gain access to the context for various parts of
the server, and as needed obtain RequestDispatcher objects from the con-
text. The given path must be begin with “/”, is interpreted relative to the
server’s document root and is matched against the context roots of other web
applications hosted on this container.

In a security conscious environment, the servlet container may return null
for a given URL.

Parameters:
uripath - a String specifying the context path of another web application in
the container.

Returns: the ServletContext object that corresponds to the named URL, or
null if either none exists or the container wishes to restrict this access.
nal Version

The javax.servlet package 182
See Also: RequestDispatcher

getContextPath()
public java.lang.String getContextPath()

Returns the context path of the web application. The context path is the
portion of the request URI that is used to select the context of the request.
The context path always come first in a request URI. The path starts with a "/
" character but does not end with a "/" character. For servlets in the default
(root) context, this method returns "".

It is possible that a servlet container may match a context by more than one
context path. In such cases getContextPath() will return the actual context
path used by the request and it may differ from the path returned by this
method. The context path returned by this method should be considered as
the prime or preferred context path of the application.

Returns: The context path of the web application.

getInitParameter(String)
public java.lang.String getInitParameter(java.lang.String name)

Returns a String containing the value of the named context-wide initializa-
tion parameter, or null if the parameter does not exist.

This method can make available configuration information useful to an entire
“web application”. For example, it can provide a webmaster’s email address
or the name of a system that holds critical data.

Parameters:
name - a String containing the name of the parameter whose value is
requested

Returns: a String containing at least the servlet container name and version
number

See Also: ServletConfig.getInitParameter(String)

getInitParameterNames()
public java.util.Enumeration getInitParameterNames()

Returns the names of the context’s initialization parameters as an
Enumeration of String objects, or an empty Enumeration if the context has
no initialization parameters.

Returns: an Enumeration of String objects containing the names of the
context’s initialization parameters

See Also: ServletConfig.getInitParameter(String)

JAVAX.SERVLET

Fi

183
getMajorVersion()
public int getMajorVersion()

Returns the major version of the Java Servlet API that this servlet container
supports. All implementations that comply with Version 2.4 must have this
method return the integer 2.

Returns: 2

getMimeType(String)
public java.lang.String getMimeType(java.lang.String file)

Returns the MIME type of the specified file, or null if the MIME type is not
known. The MIME type is determined by the configuration of the servlet
container, and may be specified in a web application deployment descriptor.
Common MIME types are “text/html” and “image/gif”.

Parameters:
file - a String specifying the name of a file

Returns: a String specifying the file’s MIME type

getMinorVersion()
public int getMinorVersion()

Returns the minor version of the Servlet API that this servlet container sup-
ports. All implementations that comply with Version 2.4 must have this
method return the integer 4.

Returns: 4

getNamedDispatcher(String)
public RequestDispatcher getNamedDispatcher(java.lang.String name)

Returns a RequestDispatcher object that acts as a wrapper for the named
servlet.

Servlets (and JSP pages also) may be given names via server administration
or via a web application deployment descriptor. A servlet instance can deter-
mine its name using ServletConfig.getServletName() .

This method returns null if the ServletContext cannot return a Request-
Dispatcher for any reason.

Parameters:
name - a String specifying the name of a servlet to wrap

Returns: a RequestDispatcher object that acts as a wrapper for the named
servlet, or null if the ServletContext cannot return a RequestDispatcher
nal Version

The javax.servlet package 184
See Also: RequestDispatcher, getContext(String),
ServletConfig.getServletName()

getRealPath(String)
public java.lang.String getRealPath(java.lang.String path)

Returns a String containing the real path for a given virtual path. For exam-
ple, the path “/index.html” returns the absolute file path on the server’s file-
system would be served by a request for “http://host/contextPath/index.html”,
where contextPath is the context path of this ServletContext.

The real path returned will be in a form appropriate to the computer and oper-
ating system on which the servlet container is running, including the proper
path separators. This method returns null if the servlet container cannot
translate the virtual path to a real path for any reason (such as when the con-
tent is being made available from a .war archive).

Parameters:
path - a String specifying a virtual path

Returns: a String specifying the real path, or null if the translation cannot
be performed

getRequestDispatcher(String)
public RequestDispatcher getRequestDispatcher(java.lang.String

path)

Returns a RequestDispatcher object that acts as a wrapper for the resource
located at the given path. A RequestDispatcher object can be used to for-
ward a request to the resource or to include the resource in a response. The
resource can be dynamic or static.

The pathname must begin with a “/” and is interpreted as relative to the cur-
rent context root. Use getContext to obtain a RequestDispatcher for
resources in foreign contexts. This method returns null if the Servlet-
Context cannot return a RequestDispatcher.

Parameters:
path - a String specifying the pathname to the resource

Returns: a RequestDispatcher object that acts as a wrapper for the
resource at the specified path, or null if the ServletContext cannot return a
RequestDispatcher

See Also: RequestDispatcher, getContext(String)

getResource(String)

JAVAX.SERVLET

Fi

185
public java.net.URL getResource(java.lang.String path)
throws MalformedURLException

Returns a URL to the resource that is mapped to a specified path. The path
must begin with a “/” and is interpreted as relative to the current context root.

This method allows the servlet container to make a resource available to serv-
lets from any source. Resources can be located on a local or remote file sys-
tem, in a database, or in a .war file.

The servlet container must implement the URL handlers and URLConnection
objects that are necessary to access the resource.

This method returns null if no resource is mapped to the pathname.

Some containers may allow writing to the URL returned by this method using
the methods of the URL class.

The resource content is returned directly, so be aware that requesting a .jsp
page returns the JSP source code. Use a RequestDispatcher instead to
include results of an execution.

This method has a different purpose than java.lang.Class.getResource,
which looks up resources based on a class loader. This method does not use
class loaders.

Parameters:
path - a String specifying the path to the resource

Returns: the resource located at the named path, or null if there is no
resource at that path

Throws:
MalformedURLException - if the pathname is not given in the correct form

getResourceAsStream(String)
public java.io.InputStream getResourceAsStream(java.lang.String

path)

Returns the resource located at the named path as an InputStream object.

The data in the InputStream can be of any type or length. The path must be
specified according to the rules given in getResource. This method returns
null if no resource exists at the specified path.

Meta-information such as content length and content type that is available via
getResource method is lost when using this method.

The servlet container must implement the URL handlers and URLConnection
objects necessary to access the resource.
nal Version

The javax.servlet package 186
This method is different from java.lang.Class.getResourceAsStream,
which uses a class loader. This method allows servlet containers to make a
resource available to a servlet from any location, without using a class loader.

Parameters:
path - a String specifying the path to the resource

Returns: the InputStream returned to the servlet, or null if no resource
exists at the specified path

getResourcePaths(String)
public java.util.Set getResourcePaths(java.lang.String path)

Returns a directory-like listing of all the paths to resources within the web
application whose longest sub-path matches the supplied path argument.
Paths indicating subdirectory paths end with a ’/’. The returned paths are all
relative to the root of the web application and have a leading ’/’. For example,
for a web application containing

 /welcome.html
 /catalog/index.html
 /catalog/products.html
 /catalog/offers/books.html
 /catalog/offers/music.html
 /customer/login.jsp
 /WEB-INF/web.xml
 /WEB-INF/classes/com.acme.OrderServlet.class,

 getResourcePaths(“/”) returns {“/welcome.html”, “/catalog/”, “/customer/”,
“/WEB-INF/”}
 getResourcePaths(“/catalog/”) returns {“/catalog/index.html”, “/catalog/
products.html”, “/catalog/offers/”}.

Parameters:
path - the partial path used to match the resources, which must start with a /

Returns: a Set containing the directory listing, or null if there are no
resources in the web application whose path begins with the supplied path.

Since: Servlet 2.3

getServerInfo()
public java.lang.String getServerInfo()

Returns the name and version of the servlet container on which the servlet is
running.

JAVAX.SERVLET

Fi

187
The form of the returned string is servername/versionnumber. For example,
the JavaServer Web Development Kit may return the string JavaServer Web
Dev Kit/1.0.

The servlet container may return other optional information after the primary
string in parentheses, for example, JavaServer Web Dev Kit/1.0 (JDK
1.1.6; Windows NT 4.0 x86).

Returns: a String containing at least the servlet container name and version
number

getServlet(String)
public Servlet getServlet(java.lang.String name)

throws ServletException

Deprecated. As of Java Servlet API 2.1, with no direct replacement.

This method was originally defined to retrieve a servlet from a
ServletContext. In this version, this method always returns null and
remains only to preserve binary compatibility. This method will be
permanently removed in a future version of the Java Servlet API.

In lieu of this method, servlets can share information using the
ServletContext class and can perform shared business logic by invoking
methods on common non-servlet classes.

Throws:
ServletException

getServletContextName()
public java.lang.String getServletContextName()

Returns the name of this web application corresponding to this Servlet-
Context as specified in the deployment descriptor for this web application by
the display-name element.

Returns: The name of the web application or null if no name has been
declared in the deployment descriptor.

Since: Servlet 2.3

getServletNames()
public java.util.Enumeration getServletNames()

Deprecated. As of Java Servlet API 2.1, with no replacement.

This method was originally defined to return an Enumeration of all the
servlet names known to this context. In this version, this method always
returns an empty Enumeration and remains only to preserve binary
nal Version

The javax.servlet package 188
compatibility. This method will be permanently removed in a future version
of the Java Servlet API.

getServlets()
public java.util.Enumeration getServlets()

Deprecated. As of Java Servlet API 2.0, with no replacement.

This method was originally defined to return an Enumeration of all the
servlets known to this servlet context. In this version, this method always
returns an empty enumeration and remains only to preserve binary
compatibility. This method will be permanently removed in a future version
of the Java Servlet API.

log(Exception, String)
public void log(java.lang.Exception exception,

java.lang.String msg)

Deprecated. As of Java Servlet API 2.1, use log(String, Throwable)
instead.

This method was originally defined to write an exception’s stack trace and an
explanatory error message to the servlet log file.

log(String)
public void log(java.lang.String msg)

Writes the specified message to a servlet log file, usually an event log. The
name and type of the servlet log file is specific to the servlet container.

Parameters:
msg - a String specifying the message to be written to the log file

log(String, Throwable)
public void log(java.lang.String message,

java.lang.Throwable throwable)

Writes an explanatory message and a stack trace for a given Throwable
exception to the servlet log file. The name and type of the servlet log file is
specific to the servlet container, usually an event log.

Parameters:
message - a String that describes the error or exception

throwable - the Throwable error or exception

removeAttribute(String)
public void removeAttribute(java.lang.String name)

JAVAX.SERVLET

Fi

189
Removes the attribute with the given name from the servlet context. After
removal, subsequent calls to getAttribute(String) to retrieve the
attribute’s value will return null.

If listeners are configured on the ServletContext the container notifies them
accordingly.

Parameters:
name - a String specifying the name of the attribute to be removed

setAttribute(String, Object)
public void setAttribute(java.lang.String name,

java.lang.Object object)

Binds an object to a given attribute name in this servlet context. If the name
specified is already used for an attribute, this method will replace the attribute
with the new to the new attribute.

If listeners are configured on the ServletContext the container notifies them
accordingly.

If a null value is passed, the effect is the same as calling removeAttribute().

Attribute names should follow the same convention as package names. The
Java Servlet API specification reserves names matching java.*, javax.*,
and sun.*.

Parameters:
name - a String specifying the name of the attribute

object - an Object representing the attribute to be bound

SRV.15.2.9 ServletContextAttributeEvent

public class ServletContextAttributeEvent extends
javax.servlet.ServletContextEvent

All Implemented Interfaces: java.io.Serializable

This is the event class for notifications about changes to the attributes of the serv-
let context of a web application.

Since: v 2.3

See Also: ServletContextAttributeListener

SRV.15.2.9.1 Constructors

ServletContextAttributeEvent(ServletContext, String, Object)
nal Version

The javax.servlet package 190
public ServletContextAttributeEvent(ServletContext source,
java.lang.String name, java.lang.Object value)

Construct a ServletContextAttributeEvent from the given context for the
given attribute name and attribute value.

SRV.15.2.9.2 Methods

getName()
public java.lang.String getName()

Return the name of the attribute that changed on the ServletContext.

getValue()
public java.lang.Object getValue()

Returns the value of the attribute that has been added, removed, or replaced.
If the attribute was added, this is the value of the attribute. If the attribute was
removed, this is the value of the removed attribute. If the attribute was
replaced, this is the old value of the attribute.

SRV.15.2.10 ServletContextAttributeListener

public interface ServletContextAttributeListener extends
java.util.EventListener

All Superinterfaces: java.util.EventListener

Implementations of this interface receive notifications of changes to the attribute
list on the servlet context of a web application. To receive notification events, the
implementation class must be configured in the deployment descriptor for the
web application.

Since: v 2.3

See Also: ServletContextAttributeEvent

SRV.15.2.10.1 Methods

attributeAdded(ServletContextAttributeEvent)
public void attributeAdded(ServletContextAttributeEvent scab)

Notification that a new attribute was added to the servlet context. Called after
the attribute is added.

attributeRemoved(ServletContextAttributeEvent)
public void attributeRemoved(ServletContextAttributeEvent scab)

JAVAX.SERVLET

Fi

191
Notification that an existing attribute has been removed from the servlet con-
text. Called after the attribute is removed.

attributeReplaced(ServletContextAttributeEvent)
public void attributeReplaced(ServletContextAttributeEvent scab)

Notification that an attribute on the servlet context has been replaced. Called
after the attribute is replaced.

SRV.15.2.11 ServletContextEvent

public class ServletContextEvent extends java.util.EventObject

All Implemented Interfaces: java.io.Serializable

Direct Known Subclasses: ServletContextAttributeEvent

This is the event class for notifications about changes to the servlet context of a
web application.

Since: v 2.3

See Also: ServletContextListener

SRV.15.2.11.1 Constructors

ServletContextEvent(ServletContext)
public ServletContextEvent(ServletContext source)

Construct a ServletContextEvent from the given context.

Parameters:
source - - the ServletContext that is sending the event.

SRV.15.2.11.2 Methods

getServletContext()
public ServletContext getServletContext()

Return the ServletContext that changed.

Returns: the ServletContext that sent the event.

SRV.15.2.12 ServletContextListener

public interface ServletContextListener extends
java.util.EventListener

All Superinterfaces: java.util.EventListener
nal Version

The javax.servlet package 192
Implementations of this interface receive notifications about changes to the serv-
let context of the web application they are part of. To receive notification events,
the implementation class must be configured in the deployment descriptor for the
web application.

Since: v 2.3

See Also: ServletContextEvent

SRV.15.2.12.1 Methods

contextDestroyed(ServletContextEvent)
public void contextDestroyed(ServletContextEvent sce)

Notification that the servlet context is about to be shut down. All servlets and
filters have been destroy()ed before any ServletContextListeners are notified
of context destruction.

contextInitialized(ServletContextEvent)
public void contextInitialized(ServletContextEvent sce)

Notification that the web application initialization process is starting. All
ServletContextListeners are notified of context initialization before any filter
or servlet in the web application is initialized.

SRV.15.2.13 ServletException

public class ServletException extends java.lang.Exception

All Implemented Interfaces: java.io.Serializable

Direct Known Subclasses: UnavailableException

Defines a general exception a servlet can throw when it encounters difficulty.

SRV.15.2.13.1 Constructors

ServletException()
public ServletException()

Constructs a new servlet exception.

ServletException(String)
public ServletException(java.lang.String message)

Constructs a new servlet exception with the specified message. The message
can be written to the server log and/or displayed for the user.

JAVAX.SERVLET

Fi

193
Parameters:
message - a String specifying the text of the exception message

ServletException(String, Throwable)
public ServletException(java.lang.String message,

java.lang.Throwable rootCause)

Constructs a new servlet exception when the servlet needs to throw an excep-
tion and include a message about the “root cause” exception that interfered
with its normal operation, including a description message.

Parameters:
message - a String containing the text of the exception message

rootCause - the Throwable exception that interfered with the servlet’s normal
operation, making this servlet exception necessary

ServletException(Throwable)
public ServletException(java.lang.Throwable rootCause)

Constructs a new servlet exception when the servlet needs to throw an excep-
tion and include a message about the “root cause” exception that interfered
with its normal operation. The exception’s message is based on the localized
message of the underlying exception.

This method calls the getLocalizedMessage method on the Throwable
exception to get a localized exception message. When subclassing Servlet-
Exception, this method can be overridden to create an exception message
designed for a specific locale.

Parameters:
rootCause - the Throwable exception that interfered with the servlet’s normal
operation, making the servlet exception necessary

SRV.15.2.13.2 Methods

getRootCause()
public java.lang.Throwable getRootCause()

Returns the exception that caused this servlet exception.

Returns: the Throwable that caused this servlet exception

SRV.15.2.14 ServletInputStream

public abstract class ServletInputStream extends java.io.InputStream
nal Version

The javax.servlet package 194
Provides an input stream for reading binary data from a client request, including
an efficient readLine method for reading data one line at a time. With some pro-
tocols, such as HTTP POST and PUT, a ServletInputStream object can be used
to read data sent from the client.

A ServletInputStream object is normally retrieved via the
ServletRequest.getInputStream() method.

This is an abstract class that a servlet container implements. Subclasses of this
class must implement the java.io.InputStream.read() method.

See Also: ServletRequest

SRV.15.2.14.1 Constructors

ServletInputStream()
protected ServletInputStream()

Does nothing, because this is an abstract class.

SRV.15.2.14.2 Methods

readLine(byte[], int, int)
public int readLine(byte[] b, int off, int len)

throws IOException

Reads the input stream, one line at a time. Starting at an offset, reads bytes
into an array, until it reads a certain number of bytes or reaches a newline
character, which it reads into the array as well.

This method returns -1 if it reaches the end of the input stream before reading
the maximum number of bytes.

Parameters:
b - an array of bytes into which data is read

off - an integer specifying the character at which this method begins reading

len - an integer specifying the maximum number of bytes to read

Returns: an integer specifying the actual number of bytes read, or -1 if the
end of the stream is reached

Throws:
IOException - if an input or output exception has occurred

SRV.15.2.15 ServletOutputStream

public abstract class ServletOutputStream extends

JAVAX.SERVLET

Fi

195
java.io.OutputStream

Provides an output stream for sending binary data to the client. A Servlet-
OutputStream object is normally retrieved via the
ServletResponse.getOutputStream() method.

This is an abstract class that the servlet container implements. Subclasses of this
class must implement the java.io.OutputStream.write(int) method.

See Also: ServletResponse

SRV.15.2.15.1 Constructors

ServletOutputStream()
protected ServletOutputStream()

Does nothing, because this is an abstract class.

SRV.15.2.15.2 Methods

print(boolean)
public void print(boolean b)

throws IOException

Writes a boolean value to the client, with no carriage return-line feed
(CRLF) character at the end.

Parameters:
b - the boolean value to send to the client

Throws:
IOException - if an input or output exception occurred

print(char)
public void print(char c)

throws IOException

Writes a character to the client, with no carriage return-line feed (CRLF) at
the end.

Parameters:
c - the character to send to the client

Throws:
IOException - if an input or output exception occurred

print(double)
public void print(double d)

throws IOException
nal Version

The javax.servlet package 196
Writes a double value to the client, with no carriage return-line feed (CRLF)
at the end.

Parameters:
d - the double value to send to the client

Throws:
IOException - if an input or output exception occurred

print(float)
public void print(float f)

throws IOException

Writes a float value to the client, with no carriage return-line feed (CRLF)
at the end.

Parameters:
f - the float value to send to the client

Throws:
IOException - if an input or output exception occurred

print(int)
public void print(int i)

throws IOException

Writes an int to the client, with no carriage return-line feed (CRLF) at the
end.

Parameters:
i - the int to send to the client

Throws:
IOException - if an input or output exception occurred

print(long)
public void print(long l)

throws IOException

Writes a long value to the client, with no carriage return-line feed (CRLF) at
the end.

Parameters:
l - the long value to send to the client

Throws:
IOException - if an input or output exception occurred

print(String)

JAVAX.SERVLET

Fi

197
public void print(java.lang.String s)
throws IOException

Writes a String to the client, without a carriage return-line feed (CRLF)
character at the end.

Parameters:
s - the String to send to the client

Throws:
IOException - if an input or output exception occurred

println()
public void println()

throws IOException

Writes a carriage return-line feed (CRLF) to the client.

Throws:
IOException - if an input or output exception occurred

println(boolean)
public void println(boolean b)

throws IOException

Writes a boolean value to the client, followed by a carriage return-line feed
(CRLF).

Parameters:
b - the boolean value to write to the client

Throws:
IOException - if an input or output exception occurred

println(char)
public void println(char c)

throws IOException

Writes a character to the client, followed by a carriage return-line feed
(CRLF).

Parameters:
c - the character to write to the client

Throws:
IOException - if an input or output exception occurred

println(double)
public void println(double d)

throws IOException
nal Version

The javax.servlet package 198
Writes a double value to the client, followed by a carriage return-line feed
(CRLF).

Parameters:
d - the double value to write to the client

Throws:
IOException - if an input or output exception occurred

println(float)
public void println(float f)

throws IOException

Writes a float value to the client, followed by a carriage return-line feed
(CRLF).

Parameters:
f - the float value to write to the client

Throws:
IOException - if an input or output exception occurred

println(int)
public void println(int i)

throws IOException

Writes an int to the client, followed by a carriage return-line feed (CRLF)
character.

Parameters:
i - the int to write to the client

Throws:
IOException - if an input or output exception occurred

println(long)
public void println(long l)

throws IOException

Writes a long value to the client, followed by a carriage return-line feed
(CRLF).

Parameters:
l - the long value to write to the client

Throws:
IOException - if an input or output exception occurred

println(String)

JAVAX.SERVLET

Fi

199
public void println(java.lang.String s)
throws IOException

Writes a String to the client, followed by a carriage return-line feed (CRLF).

Parameters:
s - the String to write to the client

Throws:
IOException - if an input or output exception occurred

SRV.15.2.16 ServletRequest

public interface ServletRequest

All Known Subinterfaces: javax.servlet.http.HttpServletRequest

All Known Implementing Classes: ServletRequestWrapper

Defines an object to provide client request information to a servlet. The servlet
container creates a ServletRequest object and passes it as an argument to the
servlet’s service method.

A ServletRequest object provides data including parameter name and values,
attributes, and an input stream. Interfaces that extend ServletRequest can pro-
vide additional protocol-specific data (for example, HTTP data is provided by
javax.servlet.http.HttpServletRequest .

See Also: javax.servlet.http.HttpServletRequest

SRV.15.2.16.1 Methods

getAttribute(String)
public java.lang.Object getAttribute(java.lang.String name)

Returns the value of the named attribute as an Object, or null if no attribute
of the given name exists.

Attributes can be set two ways. The servlet container may set attributes to
make available custom information about a request. For example, for requests
made using HTTPS, the attribute
javax.servlet.request.X509Certificate can be used to retrieve informa-
tion on the certificate of the client. Attributes can also be set programatically
using setAttribute(String, Object) . This allows information to be
embedded into a request before a RequestDispatcher call.

Attribute names should follow the same conventions as package names. This
specification reserves names matching java.*, javax.*, and sun.*.

Parameters:
nal Version

The javax.servlet package 200
name - a String specifying the name of the attribute

Returns: an Object containing the value of the attribute, or null if the
attribute does not exist

getAttributeNames()
public java.util.Enumeration getAttributeNames()

Returns an Enumeration containing the names of the attributes available to
this request. This method returns an empty Enumeration if the request has no
attributes available to it.

Returns: an Enumeration of strings containing the names of the request’s
attributes

getCharacterEncoding()
public java.lang.String getCharacterEncoding()

Returns the name of the character encoding used in the body of this request.
This method returns null if the request does not specify a character encoding

Returns: a String containing the name of the character encoding, or null if
the request does not specify a character encoding

getContentLength()
public int getContentLength()

Returns the length, in bytes, of the request body and made available by the
input stream, or -1 if the length is not known. For HTTP servlets, same as the
value of the CGI variable CONTENT_LENGTH.

Returns: an integer containing the length of the request body or -1 if the
length is not known

getContentType()
public java.lang.String getContentType()

Returns the MIME type of the body of the request, or null if the type is not
known. For HTTP servlets, same as the value of the CGI variable
CONTENT_TYPE.

Returns: a String containing the name of the MIME type of the request, or
null if the type is not known

getInputStream()
public ServletInputStream getInputStream()

throws IOException

JAVAX.SERVLET

Fi

201
Retrieves the body of the request as binary data using a
ServletInputStream . Either this method or getReader() may be called to
read the body, not both.

Returns: a ServletInputStream object containing the body of the request

Throws:
IllegalStateException - if the getReader() method has already been
called for this request

IOException - if an input or output exception occurred

getLocalAddr()
public java.lang.String getLocalAddr()

Returns the Internet Protocol (IP) address of the interface on which the
request was received.

Returns: a String containing the IP address on which the request was
received.

Since: 2.4

getLocale()
public java.util.Locale getLocale()

Returns the preferred Locale that the client will accept content in, based on
the Accept-Language header. If the client request doesn’t provide an Accept-
Language header, this method returns the default locale for the server.

Returns: the preferred Locale for the client

getLocales()
public java.util.Enumeration getLocales()

Returns an Enumeration of Locale objects indicating, in decreasing order
starting with the preferred locale, the locales that are acceptable to the client
based on the Accept-Language header. If the client request doesn’t provide an
Accept-Language header, this method returns an Enumeration containing
one Locale, the default locale for the server.

Returns: an Enumeration of preferred Locale objects for the client

getLocalName()
public java.lang.String getLocalName()

Returns the host name of the Internet Protocol (IP) interface on which the
request was received.
nal Version

The javax.servlet package 202
Returns: a String containing the host name of the IP on which the request
was received.

Since: 2.4

getLocalPort()
public int getLocalPort()

Returns the Internet Protocol (IP) port number of the interface on which the
request was received.

Returns: an integer specifying the port number

Since: 2.4

getParameter(String)
public java.lang.String getParameter(java.lang.String name)

Returns the value of a request parameter as a String, or null if the parameter
does not exist. Request parameters are extra information sent with the
request. For HTTP servlets, parameters are contained in the query string or
posted form data.

You should only use this method when you are sure the parameter has only
one value. If the parameter might have more than one value, use
getParameterValues(String) .

If you use this method with a multivalued parameter, the value returned is
equal to the first value in the array returned by getParameterValues.

If the parameter data was sent in the request body, such as occurs with an
HTTP POST request, then reading the body directly via getInputStream()
or getReader() can interfere with the execution of this method.

Parameters:
name - a String specifying the name of the parameter

Returns: a String representing the single value of the parameter

See Also: getParameterValues(String)

getParameterMap()
public java.util.Map getParameterMap()

Returns a java.util.Map of the parameters of this request. Request parameters
are extra information sent with the request. For HTTP servlets, parameters
are contained in the query string or posted form data.

JAVAX.SERVLET

Fi

203
Returns: an immutable java.util.Map containing parameter names as keys
and parameter values as map values. The keys in the parameter map are of
type String. The values in the parameter map are of type String array.

getParameterNames()
public java.util.Enumeration getParameterNames()

Returns an Enumeration of String objects containing the names of the
parameters contained in this request. If the request has no parameters, the
method returns an empty Enumeration.

Returns: an Enumeration of String objects, each String containing the
name of a request parameter; or an empty Enumeration if the request has no
parameters

getParameterValues(String)
public java.lang.String[] getParameterValues(java.lang.String name)

Returns an array of String objects containing all of the values the given
request parameter has, or null if the parameter does not exist.

If the parameter has a single value, the array has a length of 1.

Parameters:
name - a String containing the name of the parameter whose value is
requested

Returns: an array of String objects containing the parameter’s values

See Also: getParameter(String)

getProtocol()
public java.lang.String getProtocol()

Returns the name and version of the protocol the request uses in the form
protocol/majorVersion.minorVersion, for example, HTTP/1.1. For HTTP
servlets, the value returned is the same as the value of the CGI variable
SERVER_PROTOCOL.

Returns: a String containing the protocol name and version number

getReader()
public java.io.BufferedReader getReader()

throws IOException

Retrieves the body of the request as character data using a BufferedReader.
The reader translates the character data according to the character encoding
used on the body. Either this method or getInputStream() may be called to
read the body, not both.
nal Version

The javax.servlet package 204
Returns: a BufferedReader containing the body of the request

Throws:
UnsupportedEncodingException - if the character set encoding used is not
supported and the text cannot be decoded

IllegalStateException - if getInputStream() method has been called on
this request

IOException - if an input or output exception occurred

See Also: getInputStream()

getRealPath(String)
public java.lang.String getRealPath(java.lang.String path)

Deprecated. As of Version 2.1 of the Java Servlet API, use
ServletContext.getRealPath(String) instead.

getRemoteAddr()
public java.lang.String getRemoteAddr()

Returns the Internet Protocol (IP) address of the client or last proxy that sent
the request. For HTTP servlets, same as the value of the CGI variable
REMOTE_ADDR.

Returns: a String containing the IP address of the client that sent the
request

getRemoteHost()
public java.lang.String getRemoteHost()

Returns the fully qualified name of the client or the last proxy that sent the
request. If the engine cannot or chooses not to resolve the hostname (to
improve performance), this method returns the dotted-string form of the IP
address. For HTTP servlets, same as the value of the CGI variable
REMOTE_HOST.

Returns: a String containing the fully qualified name of the client

getRemotePort()
public int getRemotePort()

Returns the Internet Protocol (IP) source port of the client or last proxy that
sent the request.

Returns: an integer specifying the port number

Since: 2.4

JAVAX.SERVLET

Fi

205
getRequestDispatcher(String)
public RequestDispatcher getRequestDispatcher(java.lang.String

path)

Returns a RequestDispatcher object that acts as a wrapper for the resource
located at the given path. A RequestDispatcher object can be used to for-
ward a request to the resource or to include the resource in a response. The
resource can be dynamic or static.

The pathname specified may be relative, although it cannot extend outside
the current servlet context. If the path begins with a “/” it is interpreted as rel-
ative to the current context root. This method returns null if the servlet con-
tainer cannot return a RequestDispatcher.

The difference between this method and
ServletContext.getRequestDispatcher(String) is that this method can
take a relative path.

Parameters:
path - a String specifying the pathname to the resource. If it is relative, it
must be relative against the current servlet.

Returns: a RequestDispatcher object that acts as a wrapper for the
resource at the specified path, or null if the servlet container cannot return a
RequestDispatcher

See Also: RequestDispatcher,
ServletContext.getRequestDispatcher(String)

getScheme()
public java.lang.String getScheme()

Returns the name of the scheme used to make this request, for example, http,
https, or ftp. Different schemes have different rules for constructing URLs,
as noted in RFC 1738.

Returns: a String containing the name of the scheme used to make this
request

getServerName()
public java.lang.String getServerName()

Returns the host name of the server to which the request was sent. It is the
value of the part before “:” in the Host header value, if any, or the resolved
server name, or the server IP address.

Returns: a String containing the name of the server
nal Version

The javax.servlet package 206
getServerPort()
public int getServerPort()

Returns the port number to which the request was sent. It is the value of the
part after “:” in the Host header value, if any, or the server port where the cli-
ent connection was accepted on.

Returns: an integer specifying the port number

isSecure()
public boolean isSecure()

Returns a boolean indicating whether this request was made using a secure
channel, such as HTTPS.

Returns: a boolean indicating if the request was made using a secure
channel

removeAttribute(String)
public void removeAttribute(java.lang.String name)

Removes an attribute from this request. This method is not generally needed
as attributes only persist as long as the request is being handled.

Attribute names should follow the same conventions as package names.
Names beginning with java.*, javax.*, and com.sun.*, are reserved for use
by Sun Microsystems.

Parameters:
name - a String specifying the name of the attribute to remove

setAttribute(String, Object)
public void setAttribute(java.lang.String name, java.lang.Object o)

Stores an attribute in this request. Attributes are reset between requests. This
method is most often used in conjunction with RequestDispatcher .

Attribute names should follow the same conventions as package names.
Names beginning with java.*, javax.*, and com.sun.*, are reserved for use
by Sun Microsystems.
 If the object passed in is null, the effect is the same as calling
removeAttribute(String) .
 It is warned that when the request is dispatched from the servlet resides in a
different web application by RequestDispatcher, the object set by this
method may not be correctly retrieved in the caller servlet.

Parameters:
name - a String specifying the name of the attribute

JAVAX.SERVLET

Fi

207
o - the Object to be stored

setCharacterEncoding(String)
public void setCharacterEncoding(java.lang.String env)

throws UnsupportedEncodingException

Overrides the name of the character encoding used in the body of this
request. This method must be called prior to reading request parameters or
reading input using getReader(). Otherwise, it has no effect.

Parameters:
env - a String containing the name of the character encoding.

Throws:
java.io.UnsupportedEncodingException - if this is not a valid encoding

SRV.15.2.17 ServletRequestAttributeEvent

public class ServletRequestAttributeEvent extends
javax.servlet.ServletRequestEvent

All Implemented Interfaces: java.io.Serializable

This is the event class for notifications of changes to the attributes of Servlet-
Request in an application.

Since: Servlet 2.4

SRV.15.2.17.1 Constructors

ServletRequestAttributeEvent(ServletContext, ServletRequest, String,
Object)

public ServletRequestAttributeEvent(ServletContext sc,
ServletRequest request, java.lang.String name,
java.lang.Object value)

Construct a ServletRequestAttributeEvent giving the servlet context of this
web application, the ServletRequest whose attributes are changing and the
name and value of the attribute.

Parameters:
sc - the ServletContext that is sending the event

request - the ServletRequest that is sending the event

name - the name of the request attribute

value - the value of the request attribute
nal Version

The javax.servlet package 208
SRV.15.2.17.2 Methods

getName()
public java.lang.String getName()

Return the name of the attribute that changed on the ServletRequest

Returns: the name of the changed request attribute

getValue()
public java.lang.Object getValue()

Returns the value of the attribute that has been added, removed or replaced. If
the attribute was added, this is the value of the attribute. If the attribute was
removed, this is the value of the removed attribute. If the attribute was
replaced, this is the old value of the attribute.

Returns: the value of the changed request attribute

SRV.15.2.18 ServletRequestAttributeListener

public interface ServletRequestAttributeListener

A ServletRequestAttributeListener can be implemented by the developer inter-
ested in being notified of request attribute changes. Notifications will be gener-
ated while the request is within the scope of the web application in which the
listener is registered. A request is defined as coming into scope when it is about to
enter the first servlet or filter in each web application, as going out of scope when
it exits the last servlet or the first filter in the chain.

Since: Servlet 2.4

SRV.15.2.18.1 Methods

attributeAdded(ServletRequestAttributeEvent)
public void attributeAdded(ServletRequestAttributeEvent srae)

Notification that a new attribute was added to the servlet request. Called after
the attribute is added.

attributeRemoved(ServletRequestAttributeEvent)
public void attributeRemoved(ServletRequestAttributeEvent srae)

Notification that a new attribute was removed from the servlet request.
Called after the attribute is removed.

attributeReplaced(ServletRequestAttributeEvent)

JAVAX.SERVLET

Fi

209
public void attributeReplaced(ServletRequestAttributeEvent srae)

Notification that an attribute was replaced on the servlet request. Called after
the attribute is replaced.

SRV.15.2.19 ServletRequestEvent

public class ServletRequestEvent extends java.util.EventObject

All Implemented Interfaces: java.io.Serializable

Direct Known Subclasses: ServletRequestAttributeEvent

Events of this kind indicate lifecycle events for a ServletRequest. The source of
the event is the ServletContext of this web application.

Since: Servlet 2.4

See Also: ServletRequestListener

SRV.15.2.19.1 Constructors

ServletRequestEvent(ServletContext, ServletRequest)
public ServletRequestEvent(ServletContext sc,

ServletRequest request)

Construct a ServletRequestEvent for the given ServletContext and Servlet-
Request.

Parameters:
sc - the ServletContext of the web application

request - the ServletRequest that is sending the event

SRV.15.2.19.2 Methods

getServletContext()
public ServletContext getServletContext()

Returns the ServletContext of this web application.

getServletRequest()
public ServletRequest getServletRequest()

Returns the ServletRequest that is changing.

SRV.15.2.20 ServletRequestListener

public interface ServletRequestListener
nal Version

The javax.servlet package 210
A ServletRequestListener can be implemented by the developer interested in
being notified of requests coming in and out of scope in a web component. A
request is defined as coming into scope when it is about to enter the first servlet or
filter in each web application, as going out of scope when it exits the last servlet
or the first filter in the chain.

Since: Servlet 2.4

SRV.15.2.20.1 Methods

requestDestroyed(ServletRequestEvent)
public void requestDestroyed(ServletRequestEvent rre)

The request is about to go out of scope of the web application.

requestInitialized(ServletRequestEvent)
public void requestInitialized(ServletRequestEvent rre)

The request is about to come into scope of the web application.

SRV.15.2.21 ServletRequestWrapper

public class ServletRequestWrapper implements
javax.servlet.ServletRequest

All Implemented Interfaces: ServletRequest

Direct Known Subclasses: javax.servlet.http.HttpServletRequestWrapper

Provides a convenient implementation of the ServletRequest interface that can be
subclassed by developers wishing to adapt the request to a Servlet. This class
implements the Wrapper or Decorator pattern. Methods default to calling through
to the wrapped request object.

Since: v 2.3

See Also: ServletRequest

SRV.15.2.21.1 Constructors

ServletRequestWrapper(ServletRequest)
public ServletRequestWrapper(ServletRequest request)

Creates a ServletRequest adaptor wrapping the given request object.

Throws:
java.lang.IllegalArgumentException - if the request is null

JAVAX.SERVLET

Fi

211
SRV.15.2.21.2 Methods

getAttribute(String)
public java.lang.Object getAttribute(java.lang.String name)

The default behavior of this method is to call getAttribute(String name) on
the wrapped request object.

Specified By: ServletRequest.getAttribute(String) in interface
ServletRequest

getAttributeNames()
public java.util.Enumeration getAttributeNames()

The default behavior of this method is to return getAttributeNames() on the
wrapped request object.

Specified By: ServletRequest.getAttributeNames() in interface
ServletRequest

getCharacterEncoding()
public java.lang.String getCharacterEncoding()

The default behavior of this method is to return getCharacterEncoding() on
the wrapped request object.

Specified By: ServletRequest.getCharacterEncoding() in interface
ServletRequest

getContentLength()
public int getContentLength()

The default behavior of this method is to return getContentLength() on the
wrapped request object.

Specified By: ServletRequest.getContentLength() in interface
ServletRequest

getContentType()
public java.lang.String getContentType()

The default behavior of this method is to return getContentType() on the
wrapped request object.

Specified By: ServletRequest.getContentType() in interface
ServletRequest

getInputStream()
nal Version

The javax.servlet package 212
public ServletInputStream getInputStream()
throws IOException

The default behavior of this method is to return getInputStream() on the
wrapped request object.

Specified By: ServletRequest.getInputStream() in interface
ServletRequest

Throws:
IOException

getLocalAddr()
public java.lang.String getLocalAddr()

The default behavior of this method is to return getLocalAddr() on the
wrapped request object.

Specified By: ServletRequest.getLocalAddr() in interface
ServletRequest

Since: 2.4

getLocale()
public java.util.Locale getLocale()

The default behavior of this method is to return getLocale() on the wrapped
request object.

Specified By: ServletRequest.getLocale() in interface ServletRequest

getLocales()
public java.util.Enumeration getLocales()

The default behavior of this method is to return getLocales() on the wrapped
request object.

Specified By: ServletRequest.getLocales() in interface
ServletRequest

getLocalName()
public java.lang.String getLocalName()

The default behavior of this method is to return getLocalName() on the
wrapped request object.

Specified By: ServletRequest.getLocalName() in interface
ServletRequest

Since: 2.4

JAVAX.SERVLET

Fi

213
getLocalPort()
public int getLocalPort()

The default behavior of this method is to return getLocalPort() on the
wrapped request object.

Specified By: ServletRequest.getLocalPort() in interface
ServletRequest

Since: 2.4

getParameter(String)
public java.lang.String getParameter(java.lang.String name)

The default behavior of this method is to return getParameter(String name)
on the wrapped request object.

Specified By: ServletRequest.getParameter(String) in interface
ServletRequest

getParameterMap()
public java.util.Map getParameterMap()

The default behavior of this method is to return getParameterMap() on the
wrapped request object.

Specified By: ServletRequest.getParameterMap() in interface
ServletRequest

getParameterNames()
public java.util.Enumeration getParameterNames()

The default behavior of this method is to return getParameterNames() on the
wrapped request object.

Specified By: ServletRequest.getParameterNames() in interface
ServletRequest

getParameterValues(String)
public java.lang.String[] getParameterValues(java.lang.String name)

The default behavior of this method is to return getParameterValues(String
name) on the wrapped request object.

Specified By: ServletRequest.getParameterValues(String) in interface
ServletRequest

getProtocol()
public java.lang.String getProtocol()
nal Version

The javax.servlet package 214
The default behavior of this method is to return getProtocol() on the wrapped
request object.

Specified By: ServletRequest.getProtocol() in interface
ServletRequest

getReader()
public java.io.BufferedReader getReader()

throws IOException

The default behavior of this method is to return getReader() on the wrapped
request object.

Specified By: ServletRequest.getReader() in interface ServletRequest

Throws:
IOException

getRealPath(String)
public java.lang.String getRealPath(java.lang.String path)

The default behavior of this method is to return getRealPath(String path) on
the wrapped request object.

Specified By: ServletRequest.getRealPath(String) in interface
ServletRequest

getRemoteAddr()
public java.lang.String getRemoteAddr()

The default behavior of this method is to return getRemoteAddr() on the
wrapped request object.

Specified By: ServletRequest.getRemoteAddr() in interface
ServletRequest

getRemoteHost()
public java.lang.String getRemoteHost()

The default behavior of this method is to return getRemoteHost() on the
wrapped request object.

Specified By: ServletRequest.getRemoteHost() in interface
ServletRequest

getRemotePort()
public int getRemotePort()

JAVAX.SERVLET

Fi

215
The default behavior of this method is to return getRemotePort() on the
wrapped request object.

Specified By: ServletRequest.getRemotePort() in interface
ServletRequest

Since: 2.4

getRequest()
public ServletRequest getRequest()

Return the wrapped request object.

getRequestDispatcher(String)
public RequestDispatcher getRequestDispatcher(java.lang.String

path)

The default behavior of this method is to return getRequestDispatcher(String
path) on the wrapped request object.

Specified By: ServletRequest.getRequestDispatcher(String) in
interface ServletRequest

getScheme()
public java.lang.String getScheme()

The default behavior of this method is to return getScheme() on the wrapped
request object.

Specified By: ServletRequest.getScheme() in interface ServletRequest

getServerName()
public java.lang.String getServerName()

The default behavior of this method is to return getServerName() on the
wrapped request object.

Specified By: ServletRequest.getServerName() in interface
ServletRequest

getServerPort()
public int getServerPort()

The default behavior of this method is to return getServerPort() on the
wrapped request object.

Specified By: ServletRequest.getServerPort() in interface
ServletRequest
nal Version

The javax.servlet package 216
isSecure()
public boolean isSecure()

The default behavior of this method is to return isSecure() on the wrapped
request object.

Specified By: ServletRequest.isSecure() in interface ServletRequest

removeAttribute(String)
public void removeAttribute(java.lang.String name)

The default behavior of this method is to call removeAttribute(String name)
on the wrapped request object.

Specified By: ServletRequest.removeAttribute(String) in interface
ServletRequest

setAttribute(String, Object)
public void setAttribute(java.lang.String name, java.lang.Object o)

The default behavior of this method is to return setAttribute(String name,
Object o) on the wrapped request object.

Specified By: ServletRequest.setAttribute(String, Object) in
interface ServletRequest

setCharacterEncoding(String)
public void setCharacterEncoding(java.lang.String enc)

throws UnsupportedEncodingException

The default behavior of this method is to set the character encoding on the
wrapped request object.

Specified By: ServletRequest.setCharacterEncoding(String) in
interface ServletRequest

Throws:
UnsupportedEncodingException

setRequest(ServletRequest)
public void setRequest(ServletRequest request)

Sets the request object being wrapped.

Throws:
java.lang.IllegalArgumentException - if the request is null.

JAVAX.SERVLET

Fi

217
SRV.15.2.22 ServletResponse

public interface ServletResponse

All Known Subinterfaces: javax.servlet.http.HttpServletResponse

All Known Implementing Classes: ServletResponseWrapper

Defines an object to assist a servlet in sending a response to the client. The servlet
container creates a ServletResponse object and passes it as an argument to the
servlet’s service method.

To send binary data in a MIME body response, use the ServletOutputStream
returned by getOutputStream() . To send character data, use the PrintWriter
object returned by getWriter() . To mix binary and text data, for example, to
create a multipart response, use a ServletOutputStream and manage the charac-
ter sections manually.

The charset for the MIME body response can be specified explicitly using the
setCharacterEncoding(String) and setContentType(String) methods, or
implicitly using the setLocale(Locale) method. Explicit specifications take
precedence over implicit specifications. If no charset is specified, ISO-8859-1
will be used. The setCharacterEncoding, setContentType, or setLocale
method must be called before getWriter and before committing the response for
the character encoding to be used.

See the Internet RFCs such as RFC 2045 (http://www.ietf.org/rfc/rfc2045.txt) for
more information on MIME. Protocols such as SMTP and HTTP define profiles
of MIME, and those standards are still evolving.

See Also: ServletOutputStream

SRV.15.2.22.1 Methods

flushBuffer()
public void flushBuffer()

throws IOException

Forces any content in the buffer to be written to the client. A call to this
method automatically commits the response, meaning the status code and
headers will be written.

Throws:
IOException

See Also: setBufferSize(int), getBufferSize(), isCommitted(),
reset()

getBufferSize()
nal Version

The javax.servlet package 218
public int getBufferSize()

Returns the actual buffer size used for the response. If no buffering is used,
this method returns 0.

Returns: the actual buffer size used

See Also: setBufferSize(int), flushBuffer(), isCommitted(), reset()

getCharacterEncoding()
public java.lang.String getCharacterEncoding()

Returns the name of the character encoding (MIME charset) used for the
body sent in this response. The character encoding may have been specified
explicitly using the setCharacterEncoding(String) or
setContentType(String) methods, or implicitly using the
setLocale(Locale) method. Explicit specifications take precedence over
implicit specifications. Calls made to these methods after getWriter has
been called or after the response has been committed have no effect on the
character encoding. If no character encoding has been specified, ISO-8859-1
is returned.

See RFC 2047 (http://www.ietf.org/rfc/rfc2047.txt) for more information
about character encoding and MIME.

Returns: a String specifying the name of the character encoding, for
example, UTF-8

getContentType()
public java.lang.String getContentType()

Returns the content type used for the MIME body sent in this response. The
content type proper must have been specified using
setContentType(String) before the response is committed. If no content
type has been specified, this method returns null. If a content type has been
specified and a character encoding has been explicitly or implicitly specified
as described in getCharacterEncoding() , the charset parameter is included
in the string returned. If no character encoding has been specified, the charset
parameter is omitted.

Returns: a String specifying the content type, for example, text/html;
charset=UTF-8, or null

Since: 2.4

getLocale()
public java.util.Locale getLocale()

JAVAX.SERVLET

Fi

219
Returns the locale specified for this response using the setLocale(Locale)
method. Calls made to setLocale after the response is committed have no
effect. If no locale has been specified, the container’s default locale is
returned.

See Also: setLocale(Locale)

getOutputStream()
public ServletOutputStream getOutputStream()

throws IOException

Returns a ServletOutputStream suitable for writing binary data in the
response. The servlet container does not encode the binary data.

Calling flush() on the ServletOutputStream commits the response. Either this
method or getWriter() may be called to write the body, not both.

Returns: a ServletOutputStream for writing binary data

Throws:
IllegalStateException - if the getWriter method has been called on this
response

IOException - if an input or output exception occurred

See Also: getWriter()

getWriter()
public java.io.PrintWriter getWriter()

throws IOException

Returns a PrintWriter object that can send character text to the client. The
PrintWriter uses the character encoding returned by
getCharacterEncoding() . If the response’s character encoding has not
been specified as described in getCharacterEncoding (i.e., the method just
returns the default value ISO-8859-1), getWriter updates it to ISO-8859-1.

Calling flush() on the PrintWriter commits the response.

Either this method or getOutputStream() may be called to write the body,
not both.

Returns: a PrintWriter object that can return character data to the client

Throws:
UnsupportedEncodingException - if the character encoding returned by
getCharacterEncoding cannot be used

IllegalStateException - if the getOutputStream method has already been
called for this response object

IOException - if an input or output exception occurred
nal Version

The javax.servlet package 220
See Also: getOutputStream(), setCharacterEncoding(String)

isCommitted()
public boolean isCommitted()

Returns a boolean indicating if the response has been committed. A commit-
ted response has already had its status code and headers written.

Returns: a boolean indicating if the response has been committed

See Also: setBufferSize(int), getBufferSize(), flushBuffer(),
reset()

reset()
public void reset()

Clears any data that exists in the buffer as well as the status code and headers.
If the response has been committed, this method throws an IllegalState-
Exception.

Throws:
IllegalStateException - if the response has already been committed

See Also: setBufferSize(int), getBufferSize(), flushBuffer(),
isCommitted()

resetBuffer()
public void resetBuffer()

Clears the content of the underlying buffer in the response without clearing
headers or status code. If the response has been committed, this method
throws an IllegalStateException.

Since: 2.3

See Also: setBufferSize(int), getBufferSize(), isCommitted(),
reset()

setBufferSize(int)
public void setBufferSize(int size)

Sets the preferred buffer size for the body of the response. The servlet con-
tainer will use a buffer at least as large as the size requested. The actual buffer
size used can be found using getBufferSize.

A larger buffer allows more content to be written before anything is actually
sent, thus providing the servlet with more time to set appropriate status codes
and headers. A smaller buffer decreases server memory load and allows the
client to start receiving data more quickly.

JAVAX.SERVLET

Fi

221
This method must be called before any response body content is written; if
content has been written or the response object has been committed, this
method throws an IllegalStateException.

Parameters:
size - the preferred buffer size

Throws:
IllegalStateException - if this method is called after content has been
written

See Also: getBufferSize(), flushBuffer(), isCommitted(), reset()

setCharacterEncoding(String)
public void setCharacterEncoding(java.lang.String charset)

Sets the character encoding (MIME charset) of the response being sent to the
client, for example, to UTF-8. If the character encoding has already been set
by setContentType(String) or setLocale(Locale) , this method over-
rides it. Calling setContentType(String) with the String of text/html
and calling this method with the String of UTF-8 is equivalent with calling
setContentType with the String of text/html; charset=UTF-8.

This method can be called repeatedly to change the character encoding. This
method has no effect if it is called after getWriter has been called or after the
response has been committed.

Containers must communicate the character encoding used for the servlet
response’s writer to the client if the protocol provides a way for doing so. In
the case of HTTP, the character encoding is communicated as part of the
Content-Type header for text media types. Note that the character encoding
cannot be communicated via HTTP headers if the servlet does not specify a
content type; however, it is still used to encode text written via the servlet
response’s writer.

Parameters:
charset - a String specifying only the character set defined by IANA
Character Sets (http://www.iana.org/assignments/character-sets)

Since: 2.4

See Also: setContentType(String)

setContentLength(int)
public void setContentLength(int len)

Sets the length of the content body in the response In HTTP servlets, this
method sets the HTTP Content-Length header.
nal Version

The javax.servlet package 222
Parameters:
len - an integer specifying the length of the content being returned to the
client; sets the Content-Length header

setContentType(String)
public void setContentType(java.lang.String type)

Sets the content type of the response being sent to the client, if the response
has not been committed yet. The given content type may include a character
encoding specification, for example, text/html;charset=UTF-8. The
response’s character encoding is only set from the given content type if this
method is called before getWriter is called.

This method may be called repeatedly to change content type and character
encoding. This method has no effect if called after the response has been
committed. It does not set the response’s character encoding if it is called
after getWriter has been called or after the response has been committed.

Containers must communicate the content type and the character encoding
used for the servlet response’s writer to the client if the protocol provides a
way for doing so. In the case of HTTP, the Content-Type header is used.

Parameters:
type - a String specifying the MIME type of the content

See Also: setLocale(Locale), setCharacterEncoding(String),
getOutputStream(), getWriter()

setLocale(Locale)
public void setLocale(java.util.Locale loc)

Sets the locale of the response, if the response has not been committed yet. It
also sets the response’s character encoding appropriately for the locale, if the
character encoding has not been explicitly set using
setContentType(String) or setCharacterEncoding(String) , get-
Writer hasn’t been called yet, and the response hasn’t been committed yet. If
the deployment descriptor contains a locale-encoding-mapping-list ele-
ment, and that element provides a mapping for the given locale, that mapping
is used. Otherwise, the mapping from locale to character encoding is con-
tainer dependent.

This method may be called repeatedly to change locale and character encod-
ing. The method has no effect if called after the response has been commit-
ted. It does not set the response’s character encoding if it is called after
setContentType(String) has been called with a charset specification, after
setCharacterEncoding(String) has been called, after getWriter has been
called, or after the response has been committed.

JAVAX.SERVLET

Fi

223
Containers must communicate the locale and the character encoding used for
the servlet response’s writer to the client if the protocol provides a way for
doing so. In the case of HTTP, the locale is communicated via the Content-
Language header, the character encoding as part of the Content-Type header
for text media types. Note that the character encoding cannot be communi-
cated via HTTP headers if the servlet does not specify a content type; how-
ever, it is still used to encode text written via the servlet response’s writer.

Parameters:
loc - the locale of the response

See Also: getLocale(), setContentType(String),
setCharacterEncoding(String)

SRV.15.2.23 ServletResponseWrapper

public class ServletResponseWrapper implements
javax.servlet.ServletResponse

All Implemented Interfaces: ServletResponse

Direct Known Subclasses: javax.servlet.http.HttpServletResponseWrap-
per

Provides a convenient implementation of the ServletResponse interface that can
be subclassed by developers wishing to adapt the response from a Servlet. This
class implements the Wrapper or Decorator pattern. Methods default to calling
through to the wrapped response object.

Since: v 2.3

See Also: ServletResponse

SRV.15.2.23.1 Constructors

ServletResponseWrapper(ServletResponse)
public ServletResponseWrapper(ServletResponse response)

Creates a ServletResponse adaptor wrapping the given response object.

Throws:
java.lang.IllegalArgumentException - if the response is null.

SRV.15.2.23.2 Methods

flushBuffer()
public void flushBuffer()

throws IOException
nal Version

The javax.servlet package 224
The default behavior of this method is to call flushBuffer() on the wrapped
response object.

Specified By: ServletResponse.flushBuffer() in interface
ServletResponse

Throws:
IOException

getBufferSize()
public int getBufferSize()

The default behavior of this method is to return getBufferSize() on the
wrapped response object.

Specified By: ServletResponse.getBufferSize() in interface
ServletResponse

getCharacterEncoding()
public java.lang.String getCharacterEncoding()

The default behavior of this method is to return getCharacterEncoding() on
the wrapped response object.

Specified By: ServletResponse.getCharacterEncoding() in interface
ServletResponse

getContentType()
public java.lang.String getContentType()

The default behavior of this method is to return getContentType() on the
wrapped response object.

Specified By: ServletResponse.getContentType() in interface
ServletResponse

Since: 2.4

getLocale()
public java.util.Locale getLocale()

The default behavior of this method is to return getLocale() on the wrapped
response object.

Specified By: ServletResponse.getLocale() in interface
ServletResponse

getOutputStream()

JAVAX.SERVLET

Fi

225
public ServletOutputStream getOutputStream()
throws IOException

The default behavior of this method is to return getOutputStream() on the
wrapped response object.

Specified By: ServletResponse.getOutputStream() in interface
ServletResponse

Throws:
IOException

getResponse()
public ServletResponse getResponse()

Return the wrapped ServletResponse object.

getWriter()
public java.io.PrintWriter getWriter()

throws IOException

The default behavior of this method is to return getWriter() on the wrapped
response object.

Specified By: ServletResponse.getWriter() in interface
ServletResponse

Throws:
IOException

isCommitted()
public boolean isCommitted()

The default behavior of this method is to return isCommitted() on the
wrapped response object.

Specified By: ServletResponse.isCommitted() in interface
ServletResponse

reset()
public void reset()

The default behavior of this method is to call reset() on the wrapped response
object.

Specified By: ServletResponse.reset() in interface ServletResponse

resetBuffer()
public void resetBuffer()
nal Version

The javax.servlet package 226
The default behavior of this method is to call resetBuffer() on the wrapped
response object.

Specified By: ServletResponse.resetBuffer() in interface
ServletResponse

setBufferSize(int)
public void setBufferSize(int size)

The default behavior of this method is to call setBufferSize(int size) on the
wrapped response object.

Specified By: ServletResponse.setBufferSize(int) in interface
ServletResponse

setCharacterEncoding(String)
public void setCharacterEncoding(java.lang.String charset)

The default behavior of this method is to call setCharacterEncoding(String
charset) on the wrapped response object.

Specified By: ServletResponse.setCharacterEncoding(String) in
interface ServletResponse

Since: 2.4

setContentLength(int)
public void setContentLength(int len)

The default behavior of this method is to call setContentLength(int len) on
the wrapped response object.

Specified By: ServletResponse.setContentLength(int) in interface
ServletResponse

setContentType(String)
public void setContentType(java.lang.String type)

The default behavior of this method is to call setContentType(String type) on
the wrapped response object.

Specified By: ServletResponse.setContentType(String) in interface
ServletResponse

setLocale(Locale)
public void setLocale(java.util.Locale loc)

The default behavior of this method is to call setLocale(Locale loc) on the
wrapped response object.

JAVAX.SERVLET

Fi

227
Specified By: ServletResponse.setLocale(Locale) in interface
ServletResponse

setResponse(ServletResponse)
public void setResponse(ServletResponse response)

Sets the response being wrapped.

Throws:
java.lang.IllegalArgumentException - if the response is null.

SRV.15.2.24 SingleThreadModel

public interface SingleThreadModel

Deprecated. As of Java Servlet API 2.4, with no direct replacement.

Ensures that servlets handle only one request at a time. This interface has no
methods.

If a servlet implements this interface, you are guaranteed that no two threads will
execute concurrently in the servlet’s service method. The servlet container can
make this guarantee by synchronizing access to a single instance of the servlet, or
by maintaining a pool of servlet instances and dispatching each new request to a
free servlet.

Note that SingleThreadModel does not solve all thread safety issues. For exam-
ple, session attributes and static variables can still be accessed by multiple
requests on multiple threads at the same time, even when SingleThreadModel
servlets are used. It is recommended that a developer take other means to resolve
those issues instead of implementing this interface, such as avoiding the usage of
an instance variable or synchronizing the block of the code accessing those
resources. This interface is deprecated in Servlet API version 2.4.

SRV.15.2.25 UnavailableException

public class UnavailableException extends
javax.servlet.ServletException

All Implemented Interfaces: java.io.Serializable

Defines an exception that a servlet or filter throws to indicate that it is perma-
nently or temporarily unavailable.

When a servlet or filter is permanently unavailable, something is wrong with it,
and it cannot handle requests until some action is taken. For example, a servlet
might be configured incorrectly, or a filter’s state may be corrupted. The compo-
nent should log both the error and the corrective action that is needed.
nal Version

The javax.servlet package 228
A servlet or filter is temporarily unavailable if it cannot handle requests momen-
tarily due to some system-wide problem. For example, a third-tier server might
not be accessible, or there may be insufficient memory or disk storage to handle
requests. A system administrator may need to take corrective action.

Servlet containers can safely treat both types of unavailable exceptions in the
same way. However, treating temporary unavailability effectively makes the serv-
let container more robust. Specifically, the servlet container might block requests
to the servlet or filter for a period of time suggested by the exception, rather than
rejecting them until the servlet container restarts.

SRV.15.2.25.1 Constructors

UnavailableException(int, Servlet, String)
public UnavailableException(int seconds, Servlet servlet,

java.lang.String msg)

Deprecated. As of Java Servlet API 2.2, use
UnavailableException(String, int) instead.

Parameters:
seconds - an integer specifying the number of seconds the servlet expects to
be unavailable; if zero or negative, indicates that the servlet can’t make an
estimate

servlet - the Servlet that is unavailable

msg - a String specifying the descriptive message, which can be written to a
log file or displayed for the user.

UnavailableException(Servlet, String)
public UnavailableException(Servlet servlet, java.lang.String msg)

Deprecated. As of Java Servlet API 2.2, use
UnavailableException(String) instead.

Parameters:
servlet - the Servlet instance that is unavailable

msg - a String specifying the descriptive message

UnavailableException(String)
public UnavailableException(java.lang.String msg)

Constructs a new exception with a descriptive message indicating that the
servlet is permanently unavailable.

Parameters:
msg - a String specifying the descriptive message

JAVAX.SERVLET

Fi

229
UnavailableException(String, int)
public UnavailableException(java.lang.String msg, int seconds)

Constructs a new exception with a descriptive message indicating that the
servlet is temporarily unavailable and giving an estimate of how long it will
be unavailable.

In some cases, the servlet cannot make an estimate. For example, the servlet
might know that a server it needs is not running, but not be able to report how
long it will take to be restored to functionality. This can be indicated with a
negative or zero value for the seconds argument.

Parameters:
msg - a String specifying the descriptive message, which can be written to a
log file or displayed for the user.

seconds - an integer specifying the number of seconds the servlet expects to
be unavailable; if zero or negative, indicates that the servlet can’t make an
estimate

SRV.15.2.25.2 Methods

getServlet()
public Servlet getServlet()

Deprecated. As of Java Servlet API 2.2, with no replacement. Returns the
servlet that is reporting its unavailability.

Returns: the Servlet object that is throwing the UnavailableException

getUnavailableSeconds()
public int getUnavailableSeconds()

Returns the number of seconds the servlet expects to be temporarily unavail-
able.

If this method returns a negative number, the servlet is permanently unavail-
able or cannot provide an estimate of how long it will be unavailable. No
effort is made to correct for the time elapsed since the exception was first
reported.

Returns: an integer specifying the number of seconds the servlet will be
temporarily unavailable, or a negative number if the servlet is permanently
unavailable or cannot make an estimate

isPermanent()
public boolean isPermanent()
nal Version

The javax.servlet package 230
Returns a boolean indicating whether the servlet is permanently unavailable.
If so, something is wrong with the servlet, and the system administrator must
take some corrective action.

Returns: true if the servlet is permanently unavailable; false if the servlet
is available or temporarily unavailable

JAVAX.SERVLET

Fi

231
nal Version

C H A P T E R SRV.16

javax.servlet.http

This chapter describes the javax.servlet.http package. The chapter includes content
that is generated automatically from the javadoc embedded in the actual Java classes
and interfaces. This allows the creation of a single, authoritative, specification docu-
ment.

SRV.16.1 Servlets Using HTTP Protocol

The javax.servlet.http package contains a number of classes and interfaces that
describe and define the contracts between a servlet class running under the HTTP
protocol and the runtime environment provided for an instance of such a class by a
conforming servlet container.

The class HttpServlet implements the Servlet interface and provides a base
developers will extend to implement servlets for implementing web applications
employing the HTTP protocol. In addition to generic Servlet interface methods,
the class HttpServlet implements interfaces providing HTTP functionality.

The basic Servlet interface defines a service method for handling client
requests. This method is called for each request that the servlet container routes to
an instance of a servlet.

Class Summary

Interfaces

HttpServletRequest Extends the javax.servlet.ServletRequest
interface to provide request information for
HTTP servlets.
232

JAVAX.SERVLET.HTTP

Fi

233
HttpServletResponse Extends the javax.servlet.ServletResponse
interface to provide HTTP-specific functionality
in sending a response.

HttpSession Provides a way to identify a user across more
than one page request or visit to a Web site and
to store information about that user.

HttpSessionActivation-
Listener

Objects that are bound to a session may listen
to container events notifying them that sessions
will be passivated and that session will be
activated.

HttpSessionAt-
tributeListener

This listener interface can be implemented in
order to get notifications of changes to the
attribute lists of sessions within this web
application.

HttpSessionBindingLis-
tener

Causes an object to be notified when it is bound
to or unbound from a session.

HttpSessionContext

HttpSessionListener Implementations of this interface are notified of
changes to the list of active sessions in a web
application.

Classes

Cookie Creates a cookie, a small amount of information
sent by a servlet to a Web browser, saved by the
browser, and later sent back to the server.

HttpServlet Provides an abstract class to be subclassed to
create an HTTP servlet suitable for a Web site.

HttpServletRequestWrap-
per

Provides a convenient implementation of the
HttpServletRequest interface that can be
subclassed by developers wishing to adapt the
request to a Servlet.

HttpServletResponse-
Wrapper

Provides a convenient implementation of the
HttpServletResponse interface that can be
subclassed by developers wishing to adapt the
response from a Servlet.

Class Summary
nal Version

Servlets Using HTTP Protocol 234
SRV.16.1.1 Cookie

public class Cookie implements java.lang.Cloneable

All Implemented Interfaces: java.lang.Cloneable

Creates a cookie, a small amount of information sent by a servlet to a Web
browser, saved by the browser, and later sent back to the server. A cookie’s value
can uniquely identify a client, so cookies are commonly used for session manage-
ment.

A cookie has a name, a single value, and optional attributes such as a comment,
path and domain qualifiers, a maximum age, and a version number. Some Web
browsers have bugs in how they handle the optional attributes, so use them spar-
ingly to improve the interoperability of your servlets.

The servlet sends cookies to the browser by using the
HttpServletResponse.addCookie(Cookie) method, which adds fields to
HTTP response headers to send cookies to the browser, one at a time. The
browser is expected to support 20 cookies for each Web server, 300 cookies total,
and may limit cookie size to 4 KB each.

The browser returns cookies to the servlet by adding fields to HTTP request head-
ers. Cookies can be retrieved from a request by using the
HttpServletRequest.getCookies() method. Several cookies might have the
same name but different path attributes.

Cookies affect the caching of the Web pages that use them. HTTP 1.0 does not
cache pages that use cookies created with this class. This class does not support
the cache control defined with HTTP 1.1.

HttpSessionBindingEvent Events of this type are either sent to an object
that implements HttpSessionBindingListener
when it is bound or unbound from a session, or
to a HttpSessionAttributeListener that has
been configured in the deployment descriptor
when any attribute is bound, unbound or
replaced in a session.

HttpSessionEvent This is the class representing event notifications
for changes to sessions within a web
application.

HttpUtils

Class Summary

JAVAX.SERVLET.HTTP

Fi

235
This class supports both the Version 0 (by Netscape) and Version 1 (by RFC
2109) cookie specifications. By default, cookies are created using Version 0 to
ensure the best interoperability.

SRV.16.1.1.1 Constructors

Cookie(String, String)
public Cookie(java.lang.String name, java.lang.String value)

Constructs a cookie with a specified name and value.

The name must conform to RFC 2109. That means it can contain only ASCII
alphanumeric characters and cannot contain commas, semicolons, or white
space or begin with a $ character. The cookie’s name cannot be changed after
creation.

The value can be anything the server chooses to send. Its value is probably of
interest only to the server. The cookie’s value can be changed after creation
with the setValue method.

By default, cookies are created according to the Netscape cookie specifica-
tion. The version can be changed with the setVersion method.

Parameters:
name - a String specifying the name of the cookie

value - a String specifying the value of the cookie

Throws:
IllegalArgumentException - if the cookie name contains illegal characters
(for example, a comma, space, or semicolon) or it is one of the tokens
reserved for use by the cookie protocol

See Also: setValue(String), setVersion(int)

SRV.16.1.1.2 Methods

clone()
public java.lang.Object clone()

Overrides the standard java.lang.Object.clone method to return a copy of
this cookie.

Overrides: java.lang.Object.clone() in class java.lang.Object

getComment()
public java.lang.String getComment()
nal Version

Servlets Using HTTP Protocol 236
Returns the comment describing the purpose of this cookie, or null if the
cookie has no comment.

Returns: a String containing the comment, or null if none

See Also: setComment(String)

getDomain()
public java.lang.String getDomain()

Returns the domain name set for this cookie. The form of the domain name is
set by RFC 2109.

Returns: a String containing the domain name

See Also: setDomain(String)

getMaxAge()
public int getMaxAge()

Returns the maximum age of the cookie, specified in seconds, By default, -1
indicating the cookie will persist until browser shutdown.

Returns: an integer specifying the maximum age of the cookie in seconds; if
negative, means the cookie persists until browser shutdown

See Also: setMaxAge(int)

getName()
public java.lang.String getName()

Returns the name of the cookie. The name cannot be changed after creation.

Returns: a String specifying the cookie’s name

getPath()
public java.lang.String getPath()

Returns the path on the server to which the browser returns this cookie. The
cookie is visible to all subpaths on the server.

Returns: a String specifying a path that contains a servlet name, for
example, /catalog

See Also: setPath(String)

getSecure()
public boolean getSecure()

Returns true if the browser is sending cookies only over a secure protocol, or
false if the browser can send cookies using any protocol.

JAVAX.SERVLET.HTTP

Fi

237
Returns: true if the browser uses a secure protocol; otherwise, true

See Also: setSecure(boolean)

getValue()
public java.lang.String getValue()

Returns the value of the cookie.

Returns: a String containing the cookie’s present value

See Also: setValue(String), Cookie

getVersion()
public int getVersion()

Returns the version of the protocol this cookie complies with. Version 1 com-
plies with RFC 2109, and version 0 complies with the original cookie specifi-
cation drafted by Netscape. Cookies provided by a browser use and identify
the browser’s cookie version.

Returns: 0 if the cookie complies with the original Netscape specification; 1
if the cookie complies with RFC 2109

See Also: setVersion(int)

setComment(String)
public void setComment(java.lang.String purpose)

Specifies a comment that describes a cookie’s purpose. The comment is use-
ful if the browser presents the cookie to the user. Comments are not sup-
ported by Netscape Version 0 cookies.

Parameters:
purpose - a String specifying the comment to display to the user

See Also: getComment()

setDomain(String)
public void setDomain(java.lang.String pattern)

Specifies the domain within which this cookie should be presented.

The form of the domain name is specified by RFC 2109. A domain name
begins with a dot (.foo.com) and means that the cookie is visible to servers in
a specified Domain Name System (DNS) zone (for example, www.foo.com,
but not a.b.foo.com). By default, cookies are only returned to the server that
sent them.

Parameters:
nal Version

Servlets Using HTTP Protocol 238
pattern - a String containing the domain name within which this cookie is
visible; form is according to RFC 2109

See Also: getDomain()

setMaxAge(int)
public void setMaxAge(int expiry)

Sets the maximum age of the cookie in seconds.

A positive value indicates that the cookie will expire after that many seconds
have passed. Note that the value is the maximum age when the cookie will
expire, not the cookie’s current age.

A negative value means that the cookie is not stored persistently and will be
deleted when the Web browser exits. A zero value causes the cookie to be
deleted.

Parameters:
expiry - an integer specifying the maximum age of the cookie in seconds; if
negative, means the cookie is not stored; if zero, deletes the cookie

See Also: getMaxAge()

setPath(String)
public void setPath(java.lang.String uri)

Specifies a path for the cookie to which the client should return the cookie.

The cookie is visible to all the pages in the directory you specify, and all the
pages in that directory’s subdirectories. A cookie’s path must include the
servlet that set the cookie, for example, /catalog, which makes the cookie vis-
ible to all directories on the server under /catalog.

Consult RFC 2109 (available on the Internet) for more information on setting
path names for cookies.

Parameters:
uri - a String specifying a path

See Also: getPath()

setSecure(boolean)
public void setSecure(boolean flag)

Indicates to the browser whether the cookie should only be sent using a
secure protocol, such as HTTPS or SSL.

The default value is false.

Parameters:

JAVAX.SERVLET.HTTP

Fi

239
flag - if true, sends the cookie from the browser to the server only when
using a secure protocol; if false, sent on any protocol

See Also: getSecure()

setValue(String)
public void setValue(java.lang.String newValue)

Assigns a new value to a cookie after the cookie is created. If you use a
binary value, you may want to use BASE64 encoding.

With Version 0 cookies, values should not contain white space, brackets,
parentheses, equals signs, commas, double quotes, slashes, question marks, at
signs, colons, and semicolons. Empty values may not behave the same way
on all browsers.

Parameters:
newValue - a String specifying the new value

See Also: getValue(), Cookie

setVersion(int)
public void setVersion(int v)

Sets the version of the cookie protocol this cookie complies with. Version 0
complies with the original Netscape cookie specification. Version 1 complies
with RFC 2109.

Since RFC 2109 is still somewhat new, consider version 1 as experimental;
do not use it yet on production sites.

Parameters:
v - 0 if the cookie should comply with the original Netscape specification; 1
if the cookie should comply with RFC 2109

See Also: getVersion()

SRV.16.1.2 HttpServlet

public abstract class HttpServlet extends
javax.servlet.GenericServlet implements java.io.Serializable

All Implemented Interfaces: java.io.Serializable, javax.servlet.Serv-
let, javax.servlet.ServletConfig

Provides an abstract class to be subclassed to create an HTTP servlet suitable for
a Web site. A subclass of HttpServlet must override at least one method, usually
one of these:

•doGet, if the servlet supports HTTP GET requests
•doPost, for HTTP POST requests
nal Version

Servlets Using HTTP Protocol 240
•doPut, for HTTP PUT requests
•doDelete, for HTTP DELETE requests
•init and destroy, to manage resources that are held for the life of the serv-
let
•getServletInfo, which the servlet uses to provide information about itself

There’s almost no reason to override the service method. service handles stan-
dard HTTP requests by dispatching them to the handler methods for each HTTP
request type (the doXXX methods listed above).

Likewise, there’s almost no reason to override the doOptions and doTrace meth-
ods.

Servlets typically run on multithreaded servers, so be aware that a servlet must
handle concurrent requests and be careful to synchronize access to shared
resources. Shared resources include in-memory data such as instance or class
variables and external objects such as files, database connections, and network
connections. See the Java Tutorial on Multithreaded Programming (http://
java.sun.com/Series/Tutorial/java/threads/multithreaded.html) for more informa-
tion on handling multiple threads in a Java program.

SRV.16.1.2.1 Constructors

HttpServlet()
public HttpServlet()

Does nothing, because this is an abstract class.

SRV.16.1.2.2 Methods

doDelete(HttpServletRequest, HttpServletResponse)
protected void doDelete(HttpServletRequest req,

HttpServletResponse resp)
throws ServletException, IOException

Called by the server (via the service method) to allow a servlet to handle a
DELETE request. The DELETE operation allows a client to remove a docu-
ment or Web page from the server.

This method does not need to be either safe or idempotent. Operations
requested through DELETE can have side effects for which users can be held
accountable. When using this method, it may be useful to save a copy of the
affected URL in temporary storage.

If the HTTP DELETE request is incorrectly formatted, doDelete returns an
HTTP “Bad Request” message.

JAVAX.SERVLET.HTTP

Fi

241
Parameters:
req - the HttpServletRequest object that contains the request the client
made of the servlet

resp - the HttpServletResponse object that contains the response the
servlet returns to the client

Throws:
IOException - if an input or output error occurs while the servlet is handling
the DELETE request

javax.servlet.ServletException - if the request for the DELETE cannot
be handled

doGet(HttpServletRequest, HttpServletResponse)
protected void doGet(HttpServletRequest req,

HttpServletResponse resp)
throws ServletException, IOException

Called by the server (via the service method) to allow a servlet to handle a
GET request.

Overriding this method to support a GET request also automatically supports
an HTTP HEAD request. A HEAD request is a GET request that returns no
body in the response, only the request header fields.

When overriding this method, read the request data, write the response head-
ers, get the response’s writer or output stream object, and finally, write the
response data. It’s best to include content type and encoding. When using a
PrintWriter object to return the response, set the content type before access-
ing the PrintWriter object.

The servlet container must write the headers before committing the response,
because in HTTP the headers must be sent before the response body.

Where possible, set the Content-Length header (with the
javax.servlet.ServletResponse.setContentLength(int) method), to
allow the servlet container to use a persistent connection to return its
response to the client, improving performance. The content length is auto-
matically set if the entire response fits inside the response buffer.

When using HTTP 1.1 chunked encoding (which means that the response has
a Transfer-Encoding header), do not set the Content-Length header.

The GET method should be safe, that is, without any side effects for which
users are held responsible. For example, most form queries have no side
effects. If a client request is intended to change stored data, the request
should use some other HTTP method.
nal Version

Servlets Using HTTP Protocol 242
The GET method should also be idempotent, meaning that it can be safely
repeated. Sometimes making a method safe also makes it idempotent. For
example, repeating queries is both safe and idempotent, but buying a product
online or modifying data is neither safe nor idempotent.

If the request is incorrectly formatted, doGet returns an HTTP “Bad Request”
message.

Parameters:
req - an HttpServletRequest object that contains the request the client has
made of the servlet

resp - an HttpServletResponse object that contains the response the servlet
sends to the client

Throws:
IOException - if an input or output error is detected when the servlet handles
the GET request

javax.servlet.ServletException - if the request for the GET could not be
handled

See Also: javax.servlet.ServletResponse.setContentType(String)

doHead(HttpServletRequest, HttpServletResponse)
protected void doHead(HttpServletRequest req,

HttpServletResponse resp)
throws ServletException, IOException

Receives an HTTP HEAD request from the protected service method and
handles the request. The client sends a HEAD request when it wants to see
only the headers of a response, such as Content-Type or Content-Length. The
HTTP HEAD method counts the output bytes in the response to set the Con-
tent-Length header accurately.

If you override this method, you can avoid computing the response body and
just set the response headers directly to improve performance. Make sure that
the doHead method you write is both safe and idempotent (that is, protects
itself from being called multiple times for one HTTP HEAD request).

If the HTTP HEAD request is incorrectly formatted, doHead returns an HTTP
“Bad Request” message.

Parameters:
req - the request object that is passed to the servlet

resp - the response object that the servlet uses to return the headers to the
clien

Throws:

JAVAX.SERVLET.HTTP

Fi

243
IOException - if an input or output error occurs

javax.servlet.ServletException - if the request for the HEAD could not
be handled

doOptions(HttpServletRequest, HttpServletResponse)
protected void doOptions(HttpServletRequest req,

HttpServletResponse resp)
throws ServletException, IOException

Called by the server (via the service method) to allow a servlet to handle a
OPTIONS request. The OPTIONS request determines which HTTP methods
the server supports and returns an appropriate header. For example, if a serv-
let overrides doGet, this method returns the following header:

Allow: GET, HEAD, TRACE, OPTIONS

There’s no need to override this method unless the servlet implements new
HTTP methods, beyond those implemented by HTTP 1.1.

Parameters:
req - the HttpServletRequest object that contains the request the client
made of the servlet

resp - the HttpServletResponse object that contains the response the
servlet returns to the client

Throws:
IOException - if an input or output error occurs while the servlet is handling
the OPTIONS request

javax.servlet.ServletException - if the request for the OPTIONS cannot
be handled

doPost(HttpServletRequest, HttpServletResponse)
protected void doPost(HttpServletRequest req,

HttpServletResponse resp)
throws ServletException, IOException

Called by the server (via the service method) to allow a servlet to handle a
POST request. The HTTP POST method allows the client to send data of
unlimited length to the Web server a single time and is useful when posting
information such as credit card numbers.

When overriding this method, read the request data, write the response head-
ers, get the response’s writer or output stream object, and finally, write the
response data. It’s best to include content type and encoding. When using a
PrintWriter object to return the response, set the content type before access-
ing the PrintWriter object.
nal Version

Servlets Using HTTP Protocol 244
The servlet container must write the headers before committing the response,
because in HTTP the headers must be sent before the response body.

Where possible, set the Content-Length header (with the
javax.servlet.ServletResponse.setContentLength(int) method), to
allow the servlet container to use a persistent connection to return its
response to the client, improving performance. The content length is auto-
matically set if the entire response fits inside the response buffer.

When using HTTP 1.1 chunked encoding (which means that the response has
a Transfer-Encoding header), do not set the Content-Length header.

This method does not need to be either safe or idempotent. Operations
requested through POST can have side effects for which the user can be held
accountable, for example, updating stored data or buying items online.

If the HTTP POST request is incorrectly formatted, doPost returns an HTTP
“Bad Request” message.

Parameters:
req - an HttpServletRequest object that contains the request the client has
made of the servlet

resp - an HttpServletResponse object that contains the response the servlet
sends to the client

Throws:
IOException - if an input or output error is detected when the servlet handles
the request

javax.servlet.ServletException - if the request for the POST could not
be handled

See Also: javax.servlet.ServletOutputStream,
javax.servlet.ServletResponse.setContentType(String)

doPut(HttpServletRequest, HttpServletResponse)
protected void doPut(HttpServletRequest req,

HttpServletResponse resp)
throws ServletException, IOException

Called by the server (via the service method) to allow a servlet to handle a
PUT request. The PUT operation allows a client to place a file on the server
and is similar to sending a file by FTP.

When overriding this method, leave intact any content headers sent with the
request (including Content-Length, Content-Type, Content-Transfer-Encod-
ing, Content-Encoding, Content-Base, Content-Language, Content-Location,
Content-MD5, and Content-Range). If your method cannot handle a content
header, it must issue an error message (HTTP 501 - Not Implemented) and

JAVAX.SERVLET.HTTP

Fi

245
discard the request. For more information on HTTP 1.1, see RFC 2616
(http://www.ietf.org/rfc/rfc2616.txt).

This method does not need to be either safe or idempotent. Operations that
doPut performs can have side effects for which the user can be held account-
able. When using this method, it may be useful to save a copy of the affected
URL in temporary storage.

If the HTTP PUT request is incorrectly formatted, doPut returns an HTTP
“Bad Request” message.

Parameters:
req - the HttpServletRequest object that contains the request the client
made of the servlet

resp - the HttpServletResponse object that contains the response the
servlet returns to the client

Throws:
IOException - if an input or output error occurs while the servlet is handling
the PUT request

javax.servlet.ServletException - if the request for the PUT cannot be
handled

doTrace(HttpServletRequest, HttpServletResponse)
protected void doTrace(HttpServletRequest req,

HttpServletResponse resp)
throws ServletException, IOException

Called by the server (via the service method) to allow a servlet to handle a
TRACE request. A TRACE returns the headers sent with the TRACE request
to the client, so that they can be used in debugging. There’s no need to over-
ride this method.

Parameters:
req - the HttpServletRequest object that contains the request the client
made of the servlet

resp - the HttpServletResponse object that contains the response the
servlet returns to the client

Throws:
IOException - if an input or output error occurs while the servlet is handling
the TRACE request

javax.servlet.ServletException - if the request for the TRACE cannot
be handled

getLastModified(HttpServletRequest)
nal Version

Servlets Using HTTP Protocol 246
protected long getLastModified(HttpServletRequest req)

Returns the time the HttpServletRequest object was last modified, in milli-
seconds since midnight January 1, 1970 GMT. If the time is unknown, this
method returns a negative number (the default).

Servlets that support HTTP GET requests and can quickly determine their
last modification time should override this method. This makes browser and
proxy caches work more effectively, reducing the load on server and network
resources.

Parameters:
req - the HttpServletRequest object that is sent to the servlet

Returns: a long integer specifying the time the HttpServletRequest object
was last modified, in milliseconds since midnight, January 1, 1970 GMT, or -
1 if the time is not known

service(HttpServletRequest, HttpServletResponse)
protected void service(HttpServletRequest req,

HttpServletResponse resp)
throws ServletException, IOException

Receives standard HTTP requests from the public service method and dis-
patches them to the doXXX methods defined in this class. This method is an
HTTP-specific version of the javax.servlet.Servlet.service(Servle-
tRequest, ServletResponse) method. There’s no need to override this
method.

Parameters:
req - the HttpServletRequest object that contains the request the client
made of the servlet

resp - the HttpServletResponse object that contains the response the
servlet returns to the client

Throws:
IOException - if an input or output error occurs while the servlet is handling
the HTTP request

javax.servlet.ServletException - if the HTTP request cannot be handled

See Also: javax.servlet.Servlet.service(ServletRequest,
ServletResponse)

service(ServletRequest, ServletResponse)
public void service(javax.servlet.ServletRequest req,

javax.servlet.ServletResponse res)
throws ServletException, IOException

JAVAX.SERVLET.HTTP

Fi

247
Dispatches client requests to the protected service method. There’s no need
to override this method.

Specified By: javax.servlet.Servlet.service(ServletRequest,

ServletResponse) in interface javax.servlet.Servlet

Overrides: javax.servlet.GenericServlet.service(ServletRequest,

ServletResponse) in class javax.servlet.GenericServlet

Parameters:
req - the HttpServletRequest object that contains the request the client
made of the servlet

res - the HttpServletResponse object that contains the response the servlet
returns to the client

Throws:
IOException - if an input or output error occurs while the servlet is handling
the HTTP request

javax.servlet.ServletException - if the HTTP request cannot be handled

See Also: javax.servlet.Servlet.service(ServletRequest,
ServletResponse)

SRV.16.1.3 HttpServletRequest

public interface HttpServletRequest extends
javax.servlet.ServletRequest

All Superinterfaces: javax.servlet.ServletRequest

All Known Implementing Classes: HttpServletRequestWrapper

Extends the javax.servlet.ServletRequest interface to provide request infor-
mation for HTTP servlets.

The servlet container creates an HttpServletRequest object and passes it as an
argument to the servlet’s service methods (doGet, doPost, etc).

SRV.16.1.3.1 Fields

BASIC_AUTH
public static final java.lang.String BASIC_AUTH

String identifier for Basic authentication. Value “BASIC”

CLIENT_CERT_AUTH
public static final java.lang.String CLIENT_CERT_AUTH
nal Version

Servlets Using HTTP Protocol 248
String identifier for Client Certificate authentication. Value
“CLIENT_CERT”

DIGEST_AUTH
public static final java.lang.String DIGEST_AUTH

String identifier for Digest authentication. Value “DIGEST”

FORM_AUTH
public static final java.lang.String FORM_AUTH

String identifier for Form authentication. Value “FORM”

SRV.16.1.3.2 Methods

getAuthType()
public java.lang.String getAuthType()

Returns the name of the authentication scheme used to protect the servlet. All
servlet containers support basic, form and client certificate authentication,
and may additionally support digest authentication. If the servlet is not
authenticated null is returned.

Same as the value of the CGI variable AUTH_TYPE.

Returns: one of the static members BASIC_AUTH, FORM_AUTH,
CLIENT_CERT_AUTH, DIGEST_AUTH (suitable for == comparison) or
the container-specific string indicating the authentication scheme, or null if
the request was not authenticated.

getContextPath()
public java.lang.String getContextPath()

Returns the portion of the request URI that indicates the context of the
request. The context path always comes first in a request URI. The path starts
with a “/” character but does not end with a “/” character. For servlets in the
default (root) context, this method returns “”. The container does not decode
this string.

It is possible that a servlet container may match a context by more than one
context path. In such cases this method will return the actual context path
used by the request and it may differ from the path returned by the Servlet-
Context.getContextPath() method. The context path returned by ServletCon-
text.getContextPath() should be considered as the prime or preferred context
path of the application.

JAVAX.SERVLET.HTTP

Fi

249
Returns: a String specifying the portion of the request URI that indicates
the context of the request.

getCookies()
public Cookie[] getCookies()

Returns an array containing all of the Cookie objects the client sent with this
request. This method returns null if no cookies were sent.

Returns: an array of all the Cookies included with this request, or null if
the request has no cookies

getDateHeader(String)
public long getDateHeader(java.lang.String name)

Returns the value of the specified request header as a long value that repre-
sents a Date object. Use this method with headers that contain dates, such as
If-Modified-Since.

The date is returned as the number of milliseconds since January 1, 1970
GMT. The header name is case insensitive.

If the request did not have a header of the specified name, this method returns
-1. If the header can’t be converted to a date, the method throws an Illegal-
ArgumentException.

Parameters:
name - a String specifying the name of the header

Returns: a long value representing the date specified in the header
expressed as the number of milliseconds since January 1, 1970 GMT, or -1 if
the named header was not included with the request

Throws:
IllegalArgumentException - If the header value can’t be converted to a date

getHeader(String)
public java.lang.String getHeader(java.lang.String name)

Returns the value of the specified request header as a String. If the request
did not include a header of the specified name, this method returns null. If
there are multiple headers with the same name, this method returns the first
head in the request. The header name is case insensitive. You can use this
method with any request header.

Parameters:
name - a String specifying the header name
nal Version

Servlets Using HTTP Protocol 250
Returns: a String containing the value of the requested header, or null if
the request does not have a header of that name

getHeaderNames()
public java.util.Enumeration getHeaderNames()

Returns an enumeration of all the header names this request contains. If the
request has no headers, this method returns an empty enumeration.

Some servlet containers do not allow servlets to access headers using this
method, in which case this method returns null

Returns: an enumeration of all the header names sent with this request; if
the request has no headers, an empty enumeration; if the servlet container
does not allow servlets to use this method, null

getHeaders(String)
public java.util.Enumeration getHeaders(java.lang.String name)

Returns all the values of the specified request header as an Enumeration of
String objects.

Some headers, such as Accept-Language can be sent by clients as several
headers each with a different value rather than sending the header as a
comma separated list.

If the request did not include any headers of the specified name, this method
returns an empty Enumeration. The header name is case insensitive. You can
use this method with any request header.

Parameters:
name - a String specifying the header name

Returns: an Enumeration containing the values of the requested header. If
the request does not have any headers of that name return an empty
enumeration. If the container does not allow access to header information,
return null

getIntHeader(String)
public int getIntHeader(java.lang.String name)

Returns the value of the specified request header as an int. If the request
does not have a header of the specified name, this method returns -1. If the
header cannot be converted to an integer, this method throws a Number-
FormatException.

The header name is case insensitive.

Parameters:

JAVAX.SERVLET.HTTP

Fi

251
name - a String specifying the name of a request header

Returns: an integer expressing the value of the request header or -1 if the
request doesn’t have a header of this name

Throws:
NumberFormatException - If the header value can’t be converted to an int

getMethod()
public java.lang.String getMethod()

Returns the name of the HTTP method with which this request was made, for
example, GET, POST, or PUT. Same as the value of the CGI variable
REQUEST_METHOD.

Returns: a String specifying the name of the method with which this
request was made

getPathInfo()
public java.lang.String getPathInfo()

Returns any extra path information associated with the URL the client sent
when it made this request. The extra path information follows the servlet path
but precedes the query string and will start with a “/” character.

This method returns null if there was no extra path information.

Same as the value of the CGI variable PATH_INFO.

Returns: a String, decoded by the web container, specifying extra path
information that comes after the servlet path but before the query string in the
request URL; or null if the URL does not have any extra path information

getPathTranslated()
public java.lang.String getPathTranslated()

Returns any extra path information after the servlet name but before the
query string, and translates it to a real path. Same as the value of the CGI
variable PATH_TRANSLATED.

If the URL does not have any extra path information, this method returns
null or the servlet container cannot translate the virtual path to a real path for
any reason (such as when the web application is executed from an archive).
The web container does not decode this string.

Returns: a String specifying the real path, or null if the URL does not
have any extra path information

getQueryString()
nal Version

Servlets Using HTTP Protocol 252
public java.lang.String getQueryString()

Returns the query string that is contained in the request URL after the path.
This method returns null if the URL does not have a query string. Same as
the value of the CGI variable QUERY_STRING.

Returns: a String containing the query string or null if the URL contains
no query string. The value is not decoded by the container.

getRemoteUser()
public java.lang.String getRemoteUser()

Returns the login of the user making this request, if the user has been authen-
ticated, or null if the user has not been authenticated. Whether the user name
is sent with each subsequent request depends on the browser and type of
authentication. Same as the value of the CGI variable REMOTE_USER.

Returns: a String specifying the login of the user making this request, or
null if the user login is not known

getRequestedSessionId()
public java.lang.String getRequestedSessionId()

Returns the session ID specified by the client. This may not be the same as
the ID of the current valid session for this request. If the client did not specify
a session ID, this method returns null.

Returns: a String specifying the session ID, or null if the request did not
specify a session ID

See Also: isRequestedSessionIdValid()

getRequestURI()
public java.lang.String getRequestURI()

Returns the part of this request’s URL from the protocol name up to the query
string in the first line of the HTTP request. The web container does not
decode this String. For example:

First line of HTTP request Returned Value

POST /some/path.html HTTP/1.1 /some/path.html

GET http://foo.bar/a.html HTTP/1.0 /a.html

HEAD /xyz?a=b HTTP/1.1 /xyz

JAVAX.SERVLET.HTTP

Fi

253
To reconstruct an URL with a scheme and host, use
HttpUtils.getRequestURL(HttpServletRequest) .

Returns: a String containing the part of the URL from the protocol name
up to the query string

See Also: HttpUtils.getRequestURL(HttpServletRequest)

getRequestURL()
public java.lang.StringBuffer getRequestURL()

Reconstructs the URL the client used to make the request. The returned URL
contains a protocol, server name, port number, and server path, but it does not
include query string parameters.

If this request has been forwarded using RequestDispatcher.for-
ward(ServletRequest, ServletResponse), the server path in the recon-
structed URL must reflect the path used to obtain the RequestDispatcher, and
not the server path specified by the client.

Because this method returns a StringBuffer, not a string, you can modify
the URL easily, for example, to append query parameters.

This method is useful for creating redirect messages and for reporting errors.

Returns: a StringBuffer object containing the reconstructed URL

getServletPath()
public java.lang.String getServletPath()

Returns the part of this request’s URL that calls the servlet. This path starts
with a “/” character and includes either the servlet name or a path to the serv-
let, but does not include any extra path information or a query string. Same as
the value of the CGI variable SCRIPT_NAME.

This method will return an empty string (“”) if the servlet used to process this
request was matched using the “/*” pattern.

Returns: a String containing the name or path of the servlet being called, as
specified in the request URL, decoded, or an empty string if the servlet used
to process the request is matched using the “/*” pattern.

getSession()
public HttpSession getSession()

Returns the current session associated with this request, or if the request does
not have a session, creates one.

Returns: the HttpSession associated with this request
nal Version

Servlets Using HTTP Protocol 254
See Also: getSession(boolean)

getSession(boolean)
public HttpSession getSession(boolean create)

Returns the current HttpSession associated with this request or, if there is no
current session and create is true, returns a new session.

If create is false and the request has no valid HttpSession, this method
returns null.

To make sure the session is properly maintained, you must call this method
before the response is committed. If the container is using cookies to main-
tain session integrity and is asked to create a new session when the response
is committed, an IllegalStateException is thrown.

Parameters:
create - true to create a new session for this request if necessary; false to
return null if there’s no current session

Returns: the HttpSession associated with this request or null if create is
false and the request has no valid session

See Also: getSession()

getUserPrincipal()
public java.security.Principal getUserPrincipal()

Returns a java.security.Principal object containing the name of the cur-
rent authenticated user. If the user has not been authenticated, the method
returns null.

Returns: a java.security.Principal containing the name of the user
making this request; null if the user has not been authenticated

isRequestedSessionIdFromCookie()
public boolean isRequestedSessionIdFromCookie()

Checks whether the requested session ID came in as a cookie.

Returns: true if the session ID came in as a cookie; otherwise, false

See Also: getSession(boolean)

isRequestedSessionIdFromUrl()
public boolean isRequestedSessionIdFromUrl()

Deprecated. As of Version 2.1 of the Java Servlet API, use
isRequestedSessionIdFromURL() instead.

JAVAX.SERVLET.HTTP

Fi

255
isRequestedSessionIdFromURL()
public boolean isRequestedSessionIdFromURL()

Checks whether the requested session ID came in as part of the request URL.

Returns: true if the session ID came in as part of a URL; otherwise, false

See Also: getSession(boolean)

isRequestedSessionIdValid()
public boolean isRequestedSessionIdValid()

Checks whether the requested session ID is still valid.

Returns: true if this request has an id for a valid session in the current
session context; false if the client did not specify any session ID.

See Also: getRequestedSessionId(), getSession(boolean),
HttpSessionContext

isUserInRole(String)
public boolean isUserInRole(java.lang.String role)

Returns a boolean indicating whether the authenticated user is included in the
specified logical “role”. Roles and role membership can be defined using
deployment descriptors. If the user has not been authenticated, the method
returns false.

Parameters:
role - a String specifying the name of the role

Returns: a boolean indicating whether the user making this request belongs
to a given role; false if the user has not been authenticated

SRV.16.1.4 HttpServletRequestWrapper

public class HttpServletRequestWrapper extends
javax.servlet.ServletRequestWrapper implements
javax.servlet.http.HttpServletRequest

All Implemented Interfaces: HttpServletRequest, javax.servlet.Servle-
tRequest

Provides a convenient implementation of the HttpServletRequest interface that
can be subclassed by developers wishing to adapt the request to a Servlet. This
class implements the Wrapper or Decorator pattern. Methods default to calling
through to the wrapped request object.

Since: v 2.3

See Also: HttpServletRequest
nal Version

Servlets Using HTTP Protocol 256
SRV.16.1.4.1 Constructors

HttpServletRequestWrapper(HttpServletRequest)
public HttpServletRequestWrapper(HttpServletRequest request)

Constructs a request object wrapping the given request.

Throws:
java.lang.IllegalArgumentException - if the request is null

SRV.16.1.4.2 Methods

getAuthType()
public java.lang.String getAuthType()

The default behavior of this method is to return getAuthType() on the
wrapped request object.

Specified By: HttpServletRequest.getAuthType() in interface
HttpServletRequest

getContextPath()
public java.lang.String getContextPath()

The default behavior of this method is to return getContextPath() on the
wrapped request object.

Specified By: HttpServletRequest.getContextPath() in interface
HttpServletRequest

getCookies()
public Cookie[] getCookies()

The default behavior of this method is to return getCookies() on the wrapped
request object.

Specified By: HttpServletRequest.getCookies() in interface
HttpServletRequest

getDateHeader(String)
public long getDateHeader(java.lang.String name)

The default behavior of this method is to return getDateHeader(String name)
on the wrapped request object.

Specified By: HttpServletRequest.getDateHeader(String) in interface
HttpServletRequest

JAVAX.SERVLET.HTTP

Fi

257
getHeader(String)
public java.lang.String getHeader(java.lang.String name)

The default behavior of this method is to return getHeader(String name) on
the wrapped request object.

Specified By: HttpServletRequest.getHeader(String) in interface
HttpServletRequest

getHeaderNames()
public java.util.Enumeration getHeaderNames()

The default behavior of this method is to return getHeaderNames() on the
wrapped request object.

Specified By: HttpServletRequest.getHeaderNames() in interface
HttpServletRequest

getHeaders(String)
public java.util.Enumeration getHeaders(java.lang.String name)

The default behavior of this method is to return getHeaders(String name) on
the wrapped request object.

Specified By: HttpServletRequest.getHeaders(String) in interface
HttpServletRequest

getIntHeader(String)
public int getIntHeader(java.lang.String name)

The default behavior of this method is to return getIntHeader(String name)
on the wrapped request object.

Specified By: HttpServletRequest.getIntHeader(String) in interface
HttpServletRequest

getMethod()
public java.lang.String getMethod()

The default behavior of this method is to return getMethod() on the wrapped
request object.

Specified By: HttpServletRequest.getMethod() in interface
HttpServletRequest

getPathInfo()
public java.lang.String getPathInfo()
nal Version

Servlets Using HTTP Protocol 258
The default behavior of this method is to return getPathInfo() on the wrapped
request object.

Specified By: HttpServletRequest.getPathInfo() in interface
HttpServletRequest

getPathTranslated()
public java.lang.String getPathTranslated()

The default behavior of this method is to return getPathTranslated() on the
wrapped request object.

Specified By: HttpServletRequest.getPathTranslated() in interface
HttpServletRequest

getQueryString()
public java.lang.String getQueryString()

The default behavior of this method is to return getQueryString() on the
wrapped request object.

Specified By: HttpServletRequest.getQueryString() in interface
HttpServletRequest

getRemoteUser()
public java.lang.String getRemoteUser()

The default behavior of this method is to return getRemoteUser() on the
wrapped request object.

Specified By: HttpServletRequest.getRemoteUser() in interface
HttpServletRequest

getRequestedSessionId()
public java.lang.String getRequestedSessionId()

The default behavior of this method is to return getRequestedSessionId() on
the wrapped request object.

Specified By: HttpServletRequest.getRequestedSessionId() in
interface HttpServletRequest

getRequestURI()
public java.lang.String getRequestURI()

The default behavior of this method is to return getRequestURI() on the
wrapped request object.

JAVAX.SERVLET.HTTP

Fi

259
Specified By: HttpServletRequest.getRequestURI() in interface
HttpServletRequest

getRequestURL()
public java.lang.StringBuffer getRequestURL()

The default behavior of this method is to return getRequestURL() on the
wrapped request object.

Specified By: HttpServletRequest.getRequestURL() in interface
HttpServletRequest

getServletPath()
public java.lang.String getServletPath()

The default behavior of this method is to return getServletPath() on the
wrapped request object.

Specified By: HttpServletRequest.getServletPath() in interface
HttpServletRequest

getSession()
public HttpSession getSession()

The default behavior of this method is to return getSession() on the wrapped
request object.

Specified By: HttpServletRequest.getSession() in interface
HttpServletRequest

getSession(boolean)
public HttpSession getSession(boolean create)

The default behavior of this method is to return getSession(boolean create)
on the wrapped request object.

Specified By: HttpServletRequest.getSession(boolean) in interface
HttpServletRequest

getUserPrincipal()
public java.security.Principal getUserPrincipal()

The default behavior of this method is to return getUserPrincipal() on the
wrapped request object.

Specified By: HttpServletRequest.getUserPrincipal() in interface
HttpServletRequest
nal Version

Servlets Using HTTP Protocol 260
isRequestedSessionIdFromCookie()
public boolean isRequestedSessionIdFromCookie()

The default behavior of this method is to return isRequestedSessionIdFrom-
Cookie() on the wrapped request object.

Specified By:
HttpServletRequest.isRequestedSessionIdFromCookie() in interface
HttpServletRequest

isRequestedSessionIdFromUrl()
public boolean isRequestedSessionIdFromUrl()

The default behavior of this method is to return isRequestedSessionIdFrom-
Url() on the wrapped request object.

Specified By: HttpServletRequest.isRequestedSessionIdFromUrl() in
interface HttpServletRequest

isRequestedSessionIdFromURL()
public boolean isRequestedSessionIdFromURL()

The default behavior of this method is to return isRequestedSessionIdFrom-
URL() on the wrapped request object.

Specified By: HttpServletRequest.isRequestedSessionIdFromURL() in
interface HttpServletRequest

isRequestedSessionIdValid()
public boolean isRequestedSessionIdValid()

The default behavior of this method is to return isRequestedSessionIdValid()
on the wrapped request object.

Specified By: HttpServletRequest.isRequestedSessionIdValid() in
interface HttpServletRequest

isUserInRole(String)
public boolean isUserInRole(java.lang.String role)

The default behavior of this method is to return isUserInRole(String role) on
the wrapped request object.

Specified By: HttpServletRequest.isUserInRole(String) in interface
HttpServletRequest

JAVAX.SERVLET.HTTP

Fi

261
SRV.16.1.5 HttpServletResponse

public interface HttpServletResponse extends
javax.servlet.ServletResponse

All Superinterfaces: javax.servlet.ServletResponse

All Known Implementing Classes: HttpServletResponseWrapper

Extends the javax.servlet.ServletResponse interface to provide HTTP-spe-
cific functionality in sending a response. For example, it has methods to access
HTTP headers and cookies.

The servlet container creates an HttpServletResponse object and passes it as an
argument to the servlet’s service methods (doGet, doPost, etc).

See Also: javax.servlet.ServletResponse

SRV.16.1.5.1 Fields

SC_ACCEPTED
public static final int SC_ACCEPTED

Status code (202) indicating that a request was accepted for processing, but
was not completed.

SC_BAD_GATEWAY
public static final int SC_BAD_GATEWAY

Status code (502) indicating that the HTTP server received an invalid
response from a server it consulted when acting as a proxy or gateway.

SC_BAD_REQUEST
public static final int SC_BAD_REQUEST

Status code (400) indicating the request sent by the client was syntactically
incorrect.

SC_CONFLICT
public static final int SC_CONFLICT

Status code (409) indicating that the request could not be completed due to a
conflict with the current state of the resource.

SC_CONTINUE
public static final int SC_CONTINUE

Status code (100) indicating the client can continue.
nal Version

Servlets Using HTTP Protocol 262
SC_CREATED
public static final int SC_CREATED

Status code (201) indicating the request succeeded and created a new
resource on the server.

SC_EXPECTATION_FAILED
public static final int SC_EXPECTATION_FAILED

Status code (417) indicating that the server could not meet the expectation
given in the Expect request header.

SC_FORBIDDEN
public static final int SC_FORBIDDEN

Status code (403) indicating the server understood the request but refused to
fulfill it.

SC_FOUND
public static final int SC_FOUND

Status code (302) indicating that the resource reside temporarily under a dif-
ferent URI. Since the redirection might be altered on occasion, the client
should continue to use the Request-URI for future requests.(HTTP/1.1) To
represent the status code (302), it is recommended to use this variable.

SC_GATEWAY_TIMEOUT
public static final int SC_GATEWAY_TIMEOUT

Status code (504) indicating that the server did not receive a timely response
from the upstream server while acting as a gateway or proxy.

SC_GONE
public static final int SC_GONE

Status code (410) indicating that the resource is no longer available at the
server and no forwarding address is known. This condition SHOULD be con-
sidered permanent.

SC_HTTP_VERSION_NOT_SUPPORTED
public static final int SC_HTTP_VERSION_NOT_SUPPORTED

Status code (505) indicating that the server does not support or refuses to sup-
port the HTTP protocol version that was used in the request message.

SC_INTERNAL_SERVER_ERROR

JAVAX.SERVLET.HTTP

Fi

263
public static final int SC_INTERNAL_SERVER_ERROR

Status code (500) indicating an error inside the HTTP server which prevented
it from fulfilling the request.

SC_LENGTH_REQUIRED
public static final int SC_LENGTH_REQUIRED

Status code (411) indicating that the request cannot be handled without a
defined Content-Length.

SC_METHOD_NOT_ALLOWED
public static final int SC_METHOD_NOT_ALLOWED

Status code (405) indicating that the method specified in the Request-Line is
not allowed for the resource identified by the Request-URI.

SC_MOVED_PERMANENTLY
public static final int SC_MOVED_PERMANENTLY

Status code (301) indicating that the resource has permanently moved to a
new location, and that future references should use a new URI with their
requests.

SC_MOVED_TEMPORARILY
public static final int SC_MOVED_TEMPORARILY

Status code (302) indicating that the resource has temporarily moved to
another location, but that future references should still use the original URI to
access the resource. This definition is being retained for backwards compati-
bility. SC_FOUND is now the preferred definition.

SC_MULTIPLE_CHOICES
public static final int SC_MULTIPLE_CHOICES

Status code (300) indicating that the requested resource corresponds to any
one of a set of representations, each with its own specific location.

SC_NO_CONTENT
public static final int SC_NO_CONTENT

Status code (204) indicating that the request succeeded but that there was no
new information to return.

SC_NON_AUTHORITATIVE_INFORMATION
public static final int SC_NON_AUTHORITATIVE_INFORMATION
nal Version

Servlets Using HTTP Protocol 264
Status code (203) indicating that the meta information presented by the client
did not originate from the server.

SC_NOT_ACCEPTABLE
public static final int SC_NOT_ACCEPTABLE

Status code (406) indicating that the resource identified by the request is only
capable of generating response entities which have content characteristics not
acceptable according to the accept headers sent in the request.

SC_NOT_FOUND
public static final int SC_NOT_FOUND

Status code (404) indicating that the requested resource is not available.

SC_NOT_IMPLEMENTED
public static final int SC_NOT_IMPLEMENTED

Status code (501) indicating the HTTP server does not support the functional-
ity needed to fulfill the request.

SC_NOT_MODIFIED
public static final int SC_NOT_MODIFIED

Status code (304) indicating that a conditional GET operation found that the
resource was available and not modified.

SC_OK
public static final int SC_OK

Status code (200) indicating the request succeeded normally.

SC_PARTIAL_CONTENT
public static final int SC_PARTIAL_CONTENT

Status code (206) indicating that the server has fulfilled the partial GET
request for the resource.

SC_PAYMENT_REQUIRED
public static final int SC_PAYMENT_REQUIRED

Status code (402) reserved for future use.

SC_PRECONDITION_FAILED
public static final int SC_PRECONDITION_FAILED

JAVAX.SERVLET.HTTP

Fi

265
Status code (412) indicating that the precondition given in one or more of the
request-header fields evaluated to false when it was tested on the server.

SC_PROXY_AUTHENTICATION_REQUIRED
public static final int SC_PROXY_AUTHENTICATION_REQUIRED

Status code (407) indicating that the client MUST first authenticate itself with
the proxy.

SC_REQUEST_ENTITY_TOO_LARGE
public static final int SC_REQUEST_ENTITY_TOO_LARGE

Status code (413) indicating that the server is refusing to process the request
because the request entity is larger than the server is willing or able to pro-
cess.

SC_REQUEST_TIMEOUT
public static final int SC_REQUEST_TIMEOUT

Status code (408) indicating that the client did not produce a request within
the time that the server was prepared to wait.

SC_REQUEST_URI_TOO_LONG
public static final int SC_REQUEST_URI_TOO_LONG

Status code (414) indicating that the server is refusing to service the request
because the Request-URI is longer than the server is willing to interpret.

SC_REQUESTED_RANGE_NOT_SATISFIABLE
public static final int SC_REQUESTED_RANGE_NOT_SATISFIABLE

Status code (416) indicating that the server cannot serve the requested byte
range.

SC_RESET_CONTENT
public static final int SC_RESET_CONTENT

Status code (205) indicating that the agent SHOULD reset the document view
which caused the request to be sent.

SC_SEE_OTHER
public static final int SC_SEE_OTHER

Status code (303) indicating that the response to the request can be found
under a different URI.
nal Version

Servlets Using HTTP Protocol 266
SC_SERVICE_UNAVAILABLE
public static final int SC_SERVICE_UNAVAILABLE

Status code (503) indicating that the HTTP server is temporarily overloaded,
and unable to handle the request.

SC_SWITCHING_PROTOCOLS
public static final int SC_SWITCHING_PROTOCOLS

Status code (101) indicating the server is switching protocols according to
Upgrade header.

SC_TEMPORARY_REDIRECT
public static final int SC_TEMPORARY_REDIRECT

Status code (307) indicating that the requested resource resides temporarily
under a different URI. The temporary URI SHOULD be given by the
Location field in the response.

SC_UNAUTHORIZED
public static final int SC_UNAUTHORIZED

Status code (401) indicating that the request requires HTTP authentication.

SC_UNSUPPORTED_MEDIA_TYPE
public static final int SC_UNSUPPORTED_MEDIA_TYPE

Status code (415) indicating that the server is refusing to service the request
because the entity of the request is in a format not supported by the requested
resource for the requested method.

SC_USE_PROXY
public static final int SC_USE_PROXY

Status code (305) indicating that the requested resource MUST be accessed
through the proxy given by the Location field.

SRV.16.1.5.2 Methods

addCookie(Cookie)
public void addCookie(Cookie cookie)

Adds the specified cookie to the response. This method can be called multi-
ple times to set more than one cookie.

Parameters:

JAVAX.SERVLET.HTTP

Fi

267
cookie - the Cookie to return to the client

addDateHeader(String, long)
public void addDateHeader(java.lang.String name, long date)

Adds a response header with the given name and date-value. The date is spec-
ified in terms of milliseconds since the epoch. This method allows response
headers to have multiple values.

Parameters:
name - the name of the header to set

date - the additional date value

See Also: setDateHeader(String, long)

addHeader(String, String)
public void addHeader(java.lang.String name,

java.lang.String value)

Adds a response header with the given name and value. This method allows
response headers to have multiple values.

Parameters:
name - the name of the header

value - the additional header value If it contains octet string, it should be
encoded according to RFC 2047 (http://www.ietf.org/rfc/rfc2047.txt)

See Also: setHeader(String, String)

addIntHeader(String, int)
public void addIntHeader(java.lang.String name, int value)

Adds a response header with the given name and integer value. This method
allows response headers to have multiple values.

Parameters:
name - the name of the header

value - the assigned integer value

See Also: setIntHeader(String, int)

containsHeader(String)
public boolean containsHeader(java.lang.String name)

Returns a boolean indicating whether the named response header has already
been set.

Parameters:
nal Version

Servlets Using HTTP Protocol 268
name - the header name

Returns: true if the named response header has already been set; false
otherwise

encodeRedirectUrl(String)
public java.lang.String encodeRedirectUrl(java.lang.String url)

Deprecated. As of version 2.1, use encodeRedirectURL(String url) instead

Parameters:
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL
otherwise.

encodeRedirectURL(String)
public java.lang.String encodeRedirectURL(java.lang.String url)

Encodes the specified URL for use in the sendRedirect method or, if encod-
ing is not needed, returns the URL unchanged. The implementation of this
method includes the logic to determine whether the session ID needs to be
encoded in the URL. Because the rules for making this determination can dif-
fer from those used to decide whether to encode a normal link, this method is
separated from the encodeURL method.

All URLs sent to the HttpServletResponse.sendRedirect method should
be run through this method. Otherwise, URL rewriting cannot be used with
browsers which do not support cookies.

Parameters:
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL
otherwise.

See Also: sendRedirect(String), encodeUrl(String)

encodeUrl(String)
public java.lang.String encodeUrl(java.lang.String url)

Deprecated. As of version 2.1, use encodeURL(String url) instead

Parameters:
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL
otherwise.

encodeURL(String)

JAVAX.SERVLET.HTTP

Fi

269
public java.lang.String encodeURL(java.lang.String url)

Encodes the specified URL by including the session ID in it, or, if encoding
is not needed, returns the URL unchanged. The implementation of this
method includes the logic to determine whether the session ID needs to be
encoded in the URL. For example, if the browser supports cookies, or session
tracking is turned off, URL encoding is unnecessary.

For robust session tracking, all URLs emitted by a servlet should be run
through this method. Otherwise, URL rewriting cannot be used with brows-
ers which do not support cookies.

Parameters:
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL
otherwise.

sendError(int)
public void sendError(int sc)

throws IOException

Sends an error response to the client using the specified status code and clear-
ing the buffer.

If the response has already been committed, this method throws an Illegal-
StateException. After using this method, the response should be considered
to be committed and should not be written to.

Parameters:
sc - the error status code

Throws:
IOException - If an input or output exception occurs

IllegalStateException - If the response was committed before this method
call

sendError(int, String)
public void sendError(int sc, java.lang.String msg)

throws IOException

Sends an error response to the client using the specified status. The server
defaults to creating the response to look like an HTML-formatted server error
page containing the specified message, setting the content type to “text/
html”, leaving cookies and other headers unmodified. If an error-page decla-
ration has been made for the web application corresponding to the status code
passed in, it will be served back in preference to the suggested msg parame-
ter.
nal Version

Servlets Using HTTP Protocol 270
If the response has already been committed, this method throws an Illegal-
StateException. After using this method, the response should be considered
to be committed and should not be written to.

Parameters:
sc - the error status code

msg - the descriptive message

Throws:
IOException - If an input or output exception occurs

IllegalStateException - If the response was committed

sendRedirect(String)
public void sendRedirect(java.lang.String location)

throws IOException

Sends a temporary redirect response to the client using the specified redirect
location URL. This method can accept relative URLs; the servlet container
must convert the relative URL to an absolute URL before sending the
response to the client. If the location is relative without a leading ’/’ the con-
tainer interprets it as relative to the current request URI. If the location is rel-
ative with a leading ’/’ the container interprets it as relative to the servlet
container root.

If the response has already been committed, this method throws an Illegal-
StateException. After using this method, the response should be considered
to be committed and should not be written to.

Parameters:
location - the redirect location URL

Throws:
IOException - If an input or output exception occurs

IllegalStateException - If the response was committed or if a partial URL
is given and cannot be converted into a valid URL

setDateHeader(String, long)
public void setDateHeader(java.lang.String name, long date)

Sets a response header with the given name and date-value. The date is speci-
fied in terms of milliseconds since the epoch. If the header had already been
set, the new value overwrites the previous one. The containsHeader method
can be used to test for the presence of a header before setting its value.

Parameters:
name - the name of the header to set

JAVAX.SERVLET.HTTP

Fi

271
date - the assigned date value

See Also: containsHeader(String), addDateHeader(String, long)

setHeader(String, String)
public void setHeader(java.lang.String name,

java.lang.String value)

Sets a response header with the given name and value. If the header had
already been set, the new value overwrites the previous one. The contains-
Header method can be used to test for the presence of a header before setting
its value.

Parameters:
name - the name of the header

value - the header value If it contains octet string, it should be encoded
according to RFC 2047 (http://www.ietf.org/rfc/rfc2047.txt)

See Also: containsHeader(String), addHeader(String, String)

setIntHeader(String, int)
public void setIntHeader(java.lang.String name, int value)

Sets a response header with the given name and integer value. If the header
had already been set, the new value overwrites the previous one. The
containsHeader method can be used to test for the presence of a header
before setting its value.

Parameters:
name - the name of the header

value - the assigned integer value

See Also: containsHeader(String), addIntHeader(String, int)

setStatus(int)
public void setStatus(int sc)

Sets the status code for this response. This method is used to set the return
status code when there is no error (for example, for the status codes SC_OK
or SC_MOVED_TEMPORARILY). If there is an error, and the caller wishes
to invoke an error-page defined in the web application, the sendError method
should be used instead.

The container clears the buffer and sets the Location header, preserving cook-
ies and other headers.

Parameters:
sc - the status code
nal Version

Servlets Using HTTP Protocol 272
See Also: sendError(int, String)

setStatus(int, String)
public void setStatus(int sc, java.lang.String sm)

Deprecated. As of version 2.1, due to ambiguous meaning of the message
parameter. To set a status code use setStatus(int), to send an error with a
description use sendError(int, String). Sets the status code and message
for this response.

Parameters:
sc - the status code

sm - the status message

SRV.16.1.6 HttpServletResponseWrapper

public class HttpServletResponseWrapper extends
javax.servlet.ServletResponseWrapper implements
javax.servlet.http.HttpServletResponse

All Implemented Interfaces: HttpServletResponse, javax.servlet.Servle-
tResponse

Provides a convenient implementation of the HttpServletResponse interface that
can be subclassed by developers wishing to adapt the response from a Servlet.
This class implements the Wrapper or Decorator pattern. Methods default to call-
ing through to the wrapped response object.

Since: v 2.3

See Also: HttpServletResponse

SRV.16.1.6.1 Constructors

HttpServletResponseWrapper(HttpServletResponse)
public HttpServletResponseWrapper(HttpServletResponse response)

Constructs a response adaptor wrapping the given response.

Throws:
java.lang.IllegalArgumentException - if the response is null

SRV.16.1.6.2 Methods

addCookie(Cookie)
public void addCookie(Cookie cookie)

JAVAX.SERVLET.HTTP

Fi

273
The default behavior of this method is to call addCookie(Cookie cookie) on
the wrapped response object.

Specified By: HttpServletResponse.addCookie(Cookie) in interface
HttpServletResponse

addDateHeader(String, long)
public void addDateHeader(java.lang.String name, long date)

The default behavior of this method is to call addDateHeader(String name,
long date) on the wrapped response object.

Specified By: HttpServletResponse.addDateHeader(String, long) in
interface HttpServletResponse

addHeader(String, String)
public void addHeader(java.lang.String name,

java.lang.String value)

The default behavior of this method is to return addHeader(String name,
String value) on the wrapped response object.

Specified By: HttpServletResponse.addHeader(String, String) in
interface HttpServletResponse

addIntHeader(String, int)
public void addIntHeader(java.lang.String name, int value)

The default behavior of this method is to call addIntHeader(String name, int
value) on the wrapped response object.

Specified By: HttpServletResponse.addIntHeader(String, int) in
interface HttpServletResponse

containsHeader(String)
public boolean containsHeader(java.lang.String name)

The default behavior of this method is to call containsHeader(String name)
on the wrapped response object.

Specified By: HttpServletResponse.containsHeader(String) in
interface HttpServletResponse

encodeRedirectUrl(String)
public java.lang.String encodeRedirectUrl(java.lang.String url)

The default behavior of this method is to return encodeRedirectUrl(String
url) on the wrapped response object.
nal Version

Servlets Using HTTP Protocol 274
Specified By: HttpServletResponse.encodeRedirectUrl(String) in
interface HttpServletResponse

encodeRedirectURL(String)
public java.lang.String encodeRedirectURL(java.lang.String url)

The default behavior of this method is to return encodeRedirectURL(String
url) on the wrapped response object.

Specified By: HttpServletResponse.encodeRedirectURL(String) in
interface HttpServletResponse

encodeUrl(String)
public java.lang.String encodeUrl(java.lang.String url)

The default behavior of this method is to call encodeUrl(String url) on the
wrapped response object.

Specified By: HttpServletResponse.encodeUrl(String) in interface
HttpServletResponse

encodeURL(String)
public java.lang.String encodeURL(java.lang.String url)

The default behavior of this method is to call encodeURL(String url) on the
wrapped response object.

Specified By: HttpServletResponse.encodeURL(String) in interface
HttpServletResponse

sendError(int)
public void sendError(int sc)

throws IOException

The default behavior of this method is to call sendError(int sc) on the
wrapped response object.

Specified By: HttpServletResponse.sendError(int) in interface
HttpServletResponse

Throws:
IOException

sendError(int, String)
public void sendError(int sc, java.lang.String msg)

throws IOException

The default behavior of this method is to call sendError(int sc, String msg) on
the wrapped response object.

JAVAX.SERVLET.HTTP

Fi

275
Specified By: HttpServletResponse.sendError(int, String) in
interface HttpServletResponse

Throws:
IOException

sendRedirect(String)
public void sendRedirect(java.lang.String location)

throws IOException

The default behavior of this method is to return sendRedirect(String location)
on the wrapped response object.

Specified By: HttpServletResponse.sendRedirect(String) in interface
HttpServletResponse

Throws:
IOException

setDateHeader(String, long)
public void setDateHeader(java.lang.String name, long date)

The default behavior of this method is to call setDateHeader(String name,
long date) on the wrapped response object.

Specified By: HttpServletResponse.setDateHeader(String, long) in
interface HttpServletResponse

setHeader(String, String)
public void setHeader(java.lang.String name,

java.lang.String value)

The default behavior of this method is to return setHeader(String name,
String value) on the wrapped response object.

Specified By: HttpServletResponse.setHeader(String, String) in
interface HttpServletResponse

setIntHeader(String, int)
public void setIntHeader(java.lang.String name, int value)

The default behavior of this method is to call setIntHeader(String name, int
value) on the wrapped response object.

Specified By: HttpServletResponse.setIntHeader(String, int) in
interface HttpServletResponse

setStatus(int)
public void setStatus(int sc)
nal Version

Servlets Using HTTP Protocol 276
The default behavior of this method is to call setStatus(int sc) on the wrapped
response object.

Specified By: HttpServletResponse.setStatus(int) in interface
HttpServletResponse

setStatus(int, String)
public void setStatus(int sc, java.lang.String sm)

The default behavior of this method is to call setStatus(int sc, String sm) on
the wrapped response object.

Specified By: HttpServletResponse.setStatus(int, String) in
interface HttpServletResponse

SRV.16.1.7 HttpSession

public interface HttpSession

Provides a way to identify a user across more than one page request or visit to a
Web site and to store information about that user.

The servlet container uses this interface to create a session between an HTTP cli-
ent and an HTTP server. The session persists for a specified time period, across
more than one connection or page request from the user. A session usually corre-
sponds to one user, who may visit a site many times. The server can maintain a
session in many ways such as using cookies or rewriting URLs.

This interface allows servlets to
•View and manipulate information about a session, such as the session identi-
fier, creation time, and last accessed time
•Bind objects to sessions, allowing user information to persist across multiple
user connections

When an application stores an object in or removes an object from a session, the
session checks whether the object implements HttpSessionBindingListener . If
it does, the servlet notifies the object that it has been bound to or unbound from
the session. Notifications are sent after the binding methods complete. For session
that are invalidated or expire, notifications are sent after the session has been
invalidated or expired.

When container migrates a session between VMs in a distributed container set-
ting, all session attributes implementing the HttpSessionActivationListener
interface are notified.

A servlet should be able to handle cases in which the client does not choose to
join a session, such as when cookies are intentionally turned off. Until the client

JAVAX.SERVLET.HTTP

Fi

277
joins the session, isNew returns true. If the client chooses not to join the session,
getSession will return a different session on each request, and isNew will always
return true.

Session information is scoped only to the current web application
(ServletContext), so information stored in one context will not be directly visi-
ble in another.

See Also: HttpSessionBindingListener, HttpSessionContext

SRV.16.1.7.1 Methods

getAttribute(String)
public java.lang.Object getAttribute(java.lang.String name)

Returns the object bound with the specified name in this session, or null if
no object is bound under the name.

Parameters:
name - a string specifying the name of the object

Returns: the object with the specified name

Throws:
IllegalStateException - if this method is called on an invalidated session

getAttributeNames()
public java.util.Enumeration getAttributeNames()

Returns an Enumeration of String objects containing the names of all the
objects bound to this session.

Returns: an Enumeration of String objects specifying the names of all the
objects bound to this session

Throws:
IllegalStateException - if this method is called on an invalidated session

getCreationTime()
public long getCreationTime()

Returns the time when this session was created, measured in milliseconds
since midnight January 1, 1970 GMT.

Returns: a long specifying when this session was created, expressed in
milliseconds since 1/1/1970 GMT

Throws:
IllegalStateException - if this method is called on an invalidated session
nal Version

Servlets Using HTTP Protocol 278
getId()
public java.lang.String getId()

Returns a string containing the unique identifier assigned to this session. The
identifier is assigned by the servlet container and is implementation depen-
dent.

Returns: a string specifying the identifier assigned to this session

getLastAccessedTime()
public long getLastAccessedTime()

Returns the last time the client sent a request associated with this session, as
the number of milliseconds since midnight January 1, 1970 GMT, and
marked by the time the container received the request.

Actions that your application takes, such as getting or setting a value associ-
ated with the session, do not affect the access time.

Returns: a long representing the last time the client sent a request
associated with this session, expressed in milliseconds since 1/1/1970 GMT

Throws::

IllegalStateException - if this method is called on an invalidated session

getMaxInactiveInterval()
public int getMaxInactiveInterval()

Returns the maximum time interval, in seconds, that the servlet container will
keep this session open between client accesses. After this interval, the servlet
container will invalidate the session. The maximum time interval can be set
with the setMaxInactiveInterval method. A negative time indicates the
session should never timeout.

Returns: an integer specifying the number of seconds this session remains
open between client requests

See Also: setMaxInactiveInterval(int)

getServletContext()
public javax.servlet.ServletContext getServletContext()

Returns the ServletContext to which this session belongs.

Returns: The ServletContext object for the web application

Since: 2.3

JAVAX.SERVLET.HTTP

Fi

279
getSessionContext()
public HttpSessionContext getSessionContext()

Deprecated. As of Version 2.1, this method is deprecated and has no
replacement. It will be removed in a future version of the Java Servlet API.

getValue(String)
public java.lang.Object getValue(java.lang.String name)

Deprecated. As of Version 2.2, this method is replaced by
getAttribute(String) .

Parameters:
name - a string specifying the name of the object

Returns: the object with the specified name

Throws:
IllegalStateException - if this method is called on an invalidated session

getValueNames()
public java.lang.String[] getValueNames()

Deprecated. As of Version 2.2, this method is replaced by
getAttributeNames()

Returns: an array of String objects specifying the names of all the objects
bound to this session

Throws:
IllegalStateException - if this method is called on an invalidated session

invalidate()
public void invalidate()

Invalidates this session then unbinds any objects bound to it.

Throws:
IllegalStateException - if this method is called on an already invalidated
session

isNew()
public boolean isNew()

Returns true if the client does not yet know about the session or if the client
chooses not to join the session. For example, if the server used only cookie-
based sessions, and the client had disabled the use of cookies, then a session
would be new on each request.
nal Version

Servlets Using HTTP Protocol 280
Returns: true if the server has created a session, but the client has not yet
joined

Throws:
IllegalStateException - if this method is called on an already invalidated
session

putValue(String, Object)
public void putValue(java.lang.String name, java.lang.Object value)

Deprecated. As of Version 2.2, this method is replaced by
setAttribute(String, Object)

Parameters:
name - the name to which the object is bound; cannot be null

value - the object to be bound; cannot be null

Throws:
IllegalStateException - if this method is called on an invalidated session

removeAttribute(String)
public void removeAttribute(java.lang.String name)

Removes the object bound with the specified name from this session. If the
session does not have an object bound with the specified name, this method
does nothing.

After this method executes, and if the object implements HttpSession-
BindingListener, the container calls HttpSessionBinding-
Listener.valueUnbound. The container then notifies any
HttpSessionAttributeListeners in the web application.

Parameters:
name - the name of the object to remove from this session

Throws:
IllegalStateException - if this method is called on an invalidated session

removeValue(String)
public void removeValue(java.lang.String name)

Deprecated. As of Version 2.2, this method is replaced by
removeAttribute(String)

Parameters:
name - the name of the object to remove from this session

Throws:
IllegalStateException - if this method is called on an invalidated session

JAVAX.SERVLET.HTTP

Fi

281
setAttribute(String, Object)
public void setAttribute(java.lang.String name,

java.lang.Object value)

Binds an object to this session, using the name specified. If an object of the
same name is already bound to the session, the object is replaced.

After this method executes, and if the new object implements HttpSession-
BindingListener, the container calls HttpSessionBinding-
Listener.valueBound. The container then notifies any
HttpSessionAttributeListeners in the web application.

If an object was already bound to this session of this name that implements
HttpSessionBindingListener, its HttpSessionBindingListener.value-
Unbound method is called.

If the value passed in is null, this has the same effect as calling remove-
Attribute().

Parameters:
name - the name to which the object is bound; cannot be null

value - the object to be bound

Throws:
IllegalStateException - if this method is called on an invalidated session

setMaxInactiveInterval(int)
public void setMaxInactiveInterval(int interval)

Specifies the time, in seconds, between client requests before the servlet con-
tainer will invalidate this session. A negative time indicates the session
should never timeout.

Parameters:
interval - An integer specifying the number of seconds

SRV.16.1.8 HttpSessionActivationListener

public interface HttpSessionActivationListener extends
java.util.EventListener

All Superinterfaces: java.util.EventListener

Objects that are bound to a session may listen to container events notifying them
that sessions will be passivated and that session will be activated. A container that
migrates session between VMs or persists sessions is required to notify all
attributes bound to sessions implementing HttpSessionActivationListener.

Since: 2.3
nal Version

Servlets Using HTTP Protocol 282
SRV.16.1.8.1 Methods

sessionDidActivate(HttpSessionEvent)
public void sessionDidActivate(HttpSessionEvent se)

Notification that the session has just been activated.

sessionWillPassivate(HttpSessionEvent)
public void sessionWillPassivate(HttpSessionEvent se)

Notification that the session is about to be passivated.

SRV.16.1.9 HttpSessionAttributeListener

public interface HttpSessionAttributeListener extends
java.util.EventListener

All Superinterfaces: java.util.EventListener

This listener interface can be implemented in order to get notifications of
changes to the attribute lists of sessions within this web application.

Since: v 2.3

SRV.16.1.9.1 Methods

attributeAdded(HttpSessionBindingEvent)
public void attributeAdded(HttpSessionBindingEvent se)

Notification that an attribute has been added to a session. Called after the
attribute is added.

attributeRemoved(HttpSessionBindingEvent)
public void attributeRemoved(HttpSessionBindingEvent se)

Notification that an attribute has been removed from a session. Called after
the attribute is removed.

attributeReplaced(HttpSessionBindingEvent)
public void attributeReplaced(HttpSessionBindingEvent se)

Notification that an attribute has been replaced in a session. Called after the
attribute is replaced.

SRV.16.1.10 HttpSessionBindingEvent

public class HttpSessionBindingEvent extends

JAVAX.SERVLET.HTTP

Fi

283
javax.servlet.http.HttpSessionEvent

All Implemented Interfaces: java.io.Serializable

Events of this type are either sent to an object that implements
HttpSessionBindingListener when it is bound or unbound from a session, or
to a HttpSessionAttributeListener that has been configured in the deploy-
ment descriptor when any attribute is bound, unbound or replaced in a session.

The session binds the object by a call to HttpSession.setAttribute and unbinds
the object by a call to HttpSession.removeAttribute.

See Also: HttpSession, HttpSessionBindingListener, HttpSessionAt-
tributeListener

SRV.16.1.10.1 Constructors

HttpSessionBindingEvent(HttpSession, String)
public HttpSessionBindingEvent(HttpSession session,

java.lang.String name)

Constructs an event that notifies an object that it has been bound to or
unbound from a session. To receive the event, the object must implement
HttpSessionBindingListener .

Parameters:
session - the session to which the object is bound or unbound

name - the name with which the object is bound or unbound

See Also: getName(), getSession()

HttpSessionBindingEvent(HttpSession, String, Object)
public HttpSessionBindingEvent(HttpSession session,

java.lang.String name, java.lang.Object value)

Constructs an event that notifies an object that it has been bound to or
unbound from a session. To receive the event, the object must implement
HttpSessionBindingListener .

Parameters:
session - the session to which the object is bound or unbound

name - the name with which the object is bound or unbound

See Also: getName(), getSession()

SRV.16.1.10.2 Methods

getName()
nal Version

Servlets Using HTTP Protocol 284
public java.lang.String getName()

Returns the name with which the attribute is bound to or unbound from the
session.

Returns: a string specifying the name with which the object is bound to or
unbound from the session

getSession()
public HttpSession getSession()

Return the session that changed.

Overrides: HttpSessionEvent.getSession() in class HttpSessionEvent

getValue()
public java.lang.Object getValue()

Returns the value of the attribute that has been added, removed or replaced. If
the attribute was added (or bound), this is the value of the attribute. If the
attribute was removed (or unbound), this is the value of the removed attribute.
If the attribute was replaced, this is the old value of the attribute.

Since: 2.3

SRV.16.1.11 HttpSessionBindingListener

public interface HttpSessionBindingListener extends
java.util.EventListener

All Superinterfaces: java.util.EventListener

Causes an object to be notified when it is bound to or unbound from a session.
The object is notified by an HttpSessionBindingEvent object. This may be as a
result of a servlet programmer explicitly unbinding an attribute from a session,
due to a session being invalidated, or due to a session timing out.

See Also: HttpSession, HttpSessionBindingEvent

SRV.16.1.11.1 Methods

valueBound(HttpSessionBindingEvent)
public void valueBound(HttpSessionBindingEvent event)

Notifies the object that it is being bound to a session and identifies the ses-
sion.

Parameters:
event - the event that identifies the session

JAVAX.SERVLET.HTTP

Fi

285
See Also: valueUnbound(HttpSessionBindingEvent)

valueUnbound(HttpSessionBindingEvent)
public void valueUnbound(HttpSessionBindingEvent event)

Notifies the object that it is being unbound from a session and identifies the
session.

Parameters:
event - the event that identifies the session

See Also: valueBound(HttpSessionBindingEvent)

SRV.16.1.12 HttpSessionContext

public interface HttpSessionContext

Deprecated. As of Java(tm) Servlet API 2.1 for security reasons, with no replace-
ment. This interface will be removed in a future version of this API.

See Also: HttpSession, HttpSessionBindingEvent, HttpSessionBind-
ingListener

SRV.16.1.12.1 Methods

getIds()
public java.util.Enumeration getIds()

Deprecated. As of Java Servlet API 2.1 with no replacement. This method
must return an empty Enumeration and will be removed in a future version of
this API.

getSession(String)
public HttpSession getSession(java.lang.String sessionId)

Deprecated. As of Java Servlet API 2.1 with no replacement. This method
must return null and will be removed in a future version of this API.

SRV.16.1.13 HttpSessionEvent

public class HttpSessionEvent extends java.util.EventObject

All Implemented Interfaces: java.io.Serializable

Direct Known Subclasses: HttpSessionBindingEvent

This is the class representing event notifications for changes to sessions within a
web application.
nal Version

Servlets Using HTTP Protocol 286
Since: v 2.3

SRV.16.1.13.1 Constructors

HttpSessionEvent(HttpSession)
public HttpSessionEvent(HttpSession source)

Construct a session event from the given source.

SRV.16.1.13.2 Methods

getSession()
public HttpSession getSession()

Return the session that changed.

SRV.16.1.14 HttpSessionListener

public interface HttpSessionListener extends java.util.EventListener

All Superinterfaces: java.util.EventListener

Implementations of this interface are notified of changes to the list of active ses-
sions in a web application. To receive notification events, the implementation
class must be configured in the deployment descriptor for the web application.

Since: v 2.3

See Also: HttpSessionEvent

SRV.16.1.14.1 Methods

sessionCreated(HttpSessionEvent)
public void sessionCreated(HttpSessionEvent se)

Notification that a session was created.

Parameters:
se - the notification event

sessionDestroyed(HttpSessionEvent)
public void sessionDestroyed(HttpSessionEvent se)

Notification that a session is about to be invalidated.

Parameters:
se - the notification event

JAVAX.SERVLET.HTTP

Fi

287
SRV.16.1.15 HttpUtils

public class HttpUtils

Deprecated. As of Java(tm) Servlet API 2.3. These methods were only useful
with the default encoding and have been moved to the request interfaces.

SRV.16.1.15.1 Constructors

HttpUtils()
public HttpUtils()

Constructs an empty HttpUtils object.

SRV.16.1.15.2 Methods

getRequestURL(HttpServletRequest)
public static java.lang.StringBuffer

getRequestURL(HttpServletRequest req)

Reconstructs the URL the client used to make the request, using information
in the HttpServletRequest object. The returned URL contains a protocol,
server name, port number, and server path, but it does not include query
string parameters.

Because this method returns a StringBuffer, not a string, you can modify
the URL easily, for example, to append query parameters.

This method is useful for creating redirect messages and for reporting errors.

Parameters:
req - a HttpServletRequest object containing the client’s request

Returns: a StringBuffer object containing the reconstructed URL

parsePostData(int, ServletInputStream)
public static java.util.Hashtable parsePostData(int len,

javax.servlet.ServletInputStream in)

Parses data from an HTML form that the client sends to the server using the
HTTP POST method and the application/x-www-form-urlencoded MIME
type.

The data sent by the POST method contains key-value pairs. A key can
appear more than once in the POST data with different values. However, the
key appears only once in the hashtable, with its value being an array of
strings containing the multiple values sent by the POST method.
nal Version

Servlets Using HTTP Protocol 288
The keys and values in the hashtable are stored in their decoded form, so any
+ characters are converted to spaces, and characters sent in hexadecimal nota-
tion (like %xx) are converted to ASCII characters.

Parameters:
len - an integer specifying the length, in characters, of the
ServletInputStream object that is also passed to this method

in - the ServletInputStream object that contains the data sent from the
client

Returns: a HashTable object built from the parsed key-value pairs

Throws:
IllegalArgumentException - if the data sent by the POST method is invalid

parseQueryString(String)
public static java.util.Hashtable parseQueryString(java.lang.String

s)

Parses a query string passed from the client to the server and builds a Hash-
Table object with key-value pairs. The query string should be in the form of a
string packaged by the GET or POST method, that is, it should have key-
value pairs in the form key=value, with each pair separated from the next by a
& character.

A key can appear more than once in the query string with different values.
However, the key appears only once in the hashtable, with its value being an
array of strings containing the multiple values sent by the query string.

The keys and values in the hashtable are stored in their decoded form, so any
+ characters are converted to spaces, and characters sent in hexadecimal nota-
tion (like %xx) are converted to ASCII characters.

Parameters:
s - a string containing the query to be parsed

Returns: a HashTable object built from the parsed key-value pairs

Throws:
IllegalArgumentException - if the query string is invalid

JAVAX.SERVLET.HTTP

Fi

289
nal Version

Change Log

This document is the maintenance review of the Java Servlet 2.5 Servlet specifica-
tion developed under the Java Community ProcessSM (JCP).

SRV.S.17 Changes since Servlet 2.5 MR 5

SRV.17.0.1 Clarify SRV 8.4 "The Forward Method"

Change the last sentence of the section which currently is

"Before the forward method of the RequestDispatcher interface returns, the
response content must be sent and committed, and closed by the servlet container."
to read

"Before the forward method of the RequestDispatcher interface returns without
exception, the response content must be sent and committed, and closed by the serv-
let container. If an error occurs in the target of the RequestDispatcher.forward() the
exception may be propogated back through all the calling filters and servlets and
eventually back to the container."

SRV.17.0.2 Update Deployment descriptor "http-method values
allowed"

The facet for http-method element in the deployment descriptor is currently more
restrictive than the http specification. The following change is being made to the
descriptor to allow the set of method names as defined by the http specification. The
pattern value of http-methodType is being changed from
<xsd:pattern value="[\p{L}-[\p{Cc}\p{Z}]]+"/>
290

CHANGE LOG

Fi

291
to closely match what the http specification lists as allowable http methods names.

<xsd:pattern value="[!-~-[\(\)<>@,;:"/
\[\]?=\{\}\\\p{Z}]]+"/>

SRV.17.0.3 Clarify SRV 7.7.1 "Threading Issues"

Change the paragraph which currently is

"Multiple servlets executing request threads may have active access to a single ses-
sion object at the same time. The Developer has the responsibility for synchronizing
access to session resources as appropriate." to read

"Multiple servlets executing request threads may have active access to the same ses-
sion object at the same time. The container must ensure that manipulation of internal
data structures representing the session attributes is performed in a threadsafe man-
ner. The Developer has the responsibility for threadsafe access to the attribute
objects themselves. This will protect the attribute collection inside the HttpSession
object from concurrent access, eliminating the opportunity for an application to
cause that collection to become corrupted."

SRV.S.18 Changes Since Servlet 2.5 MR 2

SRV.18.0.1 Updated Annotation Requirements for Java EE containers

Added EJBs, PreDestroy, PeristenceContext, PersistenceContexts, PersistenceUnit,
and PersistenceUnits with descriptions to the list of required Java EE cdontainer
annotations in Section SRV.14.5, “Annotations and Resource Injection”.

SRV.18.0.2 Updated Java Enterprise Edition Requirements

Updated the Annotations to the final Java EE annotation names. Also updated the
"full" attribute in the web.xml to be "metadata-complete".

SRV.18.0.3 Clarified HttpServletRequest.getRequestURL()

The API documentation for javax.servlet.http.HttpServletRequest.getRequest-
URL() was clarified.
nal Version

Changes Since Servlet 2.5 MR 2 292
The text in italics was added:

If this request has been forwarded using RequestDispatcher.for-
ward(ServletRequest, ServletResponse), the server path in the recon-
structed URL must reflect the path used to obtain the RequestDispatcher, and
not the server path specified by the client. Because this method returns a
StringBuffer, not a string, you can modify the URL easily, for example, to
append query parameters.

SRV.18.0.4 Removal of IllegalStateException from HttpSession.getId()

The HttpSessionBindingListener calls the valueUnbound event after the
session has been expired, unfortunately, the HttpSession.getId() method is often
used in this scenario and is supposed to throw an IllegalStateException. The servlet
EG agreed to remove the exception from the API to prevent these types of excep-
tions.

SRV.18.0.5 ServletContext.getContextPath()

The method getContextPath() was added to the ServletContext in
Section SRV.15.2.8. The description is as follows:

public java.lang.String getContextPath()

Returns the context path of the web application. The context path is the
portion of the request URI that is used to select the context of the request.
The context path always comes first in a request URI. The path starts with a
"/" character but does not end with a "/" character. For servlets in the default
(root) context, this method returns "".

It is possible that a servlet container may match a context by more than one
context path. In such cases getContextPath() will return the actual context
path used by the request and it may differ from the path returned by this
method. The context path returned by this method should be considered as
the prime or preferred context path of the application.

Returns: The context path of the web application.

Section SRV.16.1.3 HttpServletRequest.getContextPath() was updated to clar-
ify its relationship with the ServletContext.getContextPath() method. The clarifi-
cation is as follows.

CHANGE LOG

Fi

293
It is possible that a servlet container may match a context by more than one
context path. In such cases this method will return the actual context path
used by the request and it may differ from the path returned by the
ServletContext.getContextPath() method. The context path returned by
ServletContext.getContextPath() should be considered as the prime or
preferred context path of the application.

SRV.18.0.6 Requirement for web.xml in web applications

Section SRV.9.13, “Inclusion of a web.xml Deployment Descriptor” was added
which removes requirement for Java EE compliant web applications. The section is
as follows:

A web application is NOT required to contain a web.xml if it does NOT contain any
Servlet, Filter, or Listener components. In other words an application containing
only static files or JSP pages does not require a web.xml to be present.

SRV.S.19 Changes Since Servlet 2.4

SRV.19.0.1 Session Clarification

Clarified Section SRV.7.3, “Session Scope” to allow for better support of session ids
being used in more than one context. This was done to support the Portlet specifica-
tion (JSR 168). Added the following paragraph at the end of Section SRV.7.3:

“Additionally, sessions of a context must be resumable by requests into that
context regardless of whether their associated context was being accessed directly
or as the target of a request dispatch at the time the sessions were created."

Made the changes in Section SRV.8.3, “The Include Method” by replacing the
following text:

 "It cannot set headers or call any method that affects the headers of the
response. Any attempt to do so must be ignored."

with the following:

 "It cannot set headers or call any method that affects the headers of the
response, with the exception of the HttpServletRequest.getSession() and HttpS-
nal Version

Changes Since Servlet 2.4 294
ervletRequest.getSession(boolean) methods. Any attempt to set the headers must
be ignored, and any call to HttpServletRequest.getSession() or HttpServletRe-
quest.getSession(boolean) that would require adding a Cookie response header
must throw an IllegalStateException if the response has been committed."

SRV.19.0.2 Filter All Dispatches

Modified Section SRV.6.2.5, “Filters and the RequestDispatcher” to clarify a way to
map a filter to all servlet dispatches by appending the following text to the end of the
section:

Finally, the following code uses the special servlet name '*':

<filter-mapping>

<filter-name>All Dispatch Filter</filter-name>

<servlet-name>*</servlet-name>

<dispatcher>FORWARD</dispatcher>

</filter-mapping>

This code would result in the All Dispatch Filter being invoked on request dis-
patcher forward() calls for all request dispatchers obtained by name or by path.

SRV.19.0.3 Multiple Occurrences of Servlet Mappings

Previous versions of the servlet schema allows only a single url-pattern or servlet
name per servlet mapping. For servlets mapped to multiple URLs this results in
needless repetition of whole mapping clauses.

The deployment descriptor servlet-mappingType was updated to:

<xsd:complexType name="servlet-mappingType">

<xsd:sequence>

<xsd:element name="servlet-name" type="j2ee:servlet-nameType"/>

<xsd:element name="url-pattern" type="j2ee:url-patternType" minOccurs="1"

maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="id" type="xsd:ID"/>

</xsd:complexType>

CHANGE LOG

Fi

295
SRV.19.0.4 Multiple Occurrences Filter Mappings

Previous versions of the servlet schema allows only a single url-pattern in a filter
mapping. For filters mapped to multiple URLs this results in needless repetition of
whole mapping clauses.

The deployment descriptor schema the filter-mappingType was updated
to:

<xsd:complexType name="filter-mappingType">

<xsd:sequence>

<xsd:element name="filter-name" type="j2ee:filter-nameType"/>

<xsd:choice minOccurs="1" maxOccurs="unbounded">

<xsd:element name="url-pattern" type="j2ee:url-patternType"/>

<xsd:element name="servlet-name" type="j2ee:servlet-nameType"/>

</xsd:choice>

<xsd:element name="dispatcher" type="j2ee:dispatcherType" minOccurs="0"

maxOccurs="4"/>

</xsd:sequence>

<xsd:attribute name="id" type="xsd:ID"/>

</xsd:complexType>

This change allows multiple patterns and servlet names to be defined in a sin-
gle mapping as can be seen in the following example:

<filter-mapping>

<filter-name>Demo Filter</filter-name>

<url-pattern>/foo/*</url-pattern>

<url-pattern>/bar/*</url-pattern>

<servlet-name>Logger</servlet-name>

<dispatcher>REQUEST</dispatcher>

<dispatcher>ERROR</dispatcher>

</filter-mapping>

Section SRV.6.2.4, “Configuration of Filters in a Web Application” was
updated to clarify the cases where there are multiple mappings with the following
text:

"If a filter mapping contains both <servlet-name> and <url-pattern>, the
container must expand the filter mapping into multiple filter mappings (one for
nal Version

Changes Since Servlet 2.4 296
each <servlet-name> and <url-pattern>), preserving the order of the <servlet-
name> and <url-pattern> elements."

An examples was also provided to clarify cases when there are multiple map-
pings.

SRV.19.0.5 Support Alternative HTTP Methods with Authorization
Constraints

The previous Servlet 2.4 schema restricted HTTP methods to GET, POST, PUT,
DELETE, HEAD, OPTIONS, and TRACE. The schema http-methodType was
changed from:

<xsd:complexType name="http-methodType">

...

<xsd:simpleContent>

<xsd:restriction base="j2ee:string">

<xsd:enumeration value="GET"/>

<xsd:enumeration value="POST"/>

<xsd:enumeration value="PUT"/>

<xsd:enumeration value="DELETE"/>

<xsd:enumeration value="HEAD"/>

<xsd:enumeration value="OPTIONS"/>

<xsd:enumeration value="TRACE"/>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

To the following:

<xsd:simpleType name="http-methodType">

<xsd:annotation>

<xsd:documentation>

A HTTP method type as defined in HTTP 1.1 section 2.2.

</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:token">

<xsd:pattern value="[\p{L}-[\p{Cc}\p{Z}]]+"/>

</xsd:restriction>

</xsd:simpleType>

CHANGE LOG

Fi

297
The http-method elements now need to be a token as described in HTTP 1.1
specification section 2.2.

SRV.19.0.6 Minimum J2SE Requirement

Servlet 2.5 Containers now require J2SE 5.0 as the minimum Java version.
Section SRV.1.2, “What is a Servlet Container?” was updated to reflect this require-
ment.

SRV.19.0.7 Annotations and Resource Injection

Java EE technology compliant containers require annotations and resource injection
on servlets, filters, and listeners. Section SRV.14.5, “Annotations and Resource
Injection” describes the annotations and resource injection in further detail.

SRV.19.0.8 SRV.9.9 ("Error Handling") Requirement Removed

Section SRV.9.9.1, “Request Attributes” defines the following requirement:

If the location of the error handler is a servlet or a JSP page:
[...]
The response setStatus method is disabled and ignored if called.
[...]

The JSP 2.1 EG has asked that this requirement above be removed to allow
JSP error pages to update the response status.

SRV.19.0.9 HttpServletRequest.isRequestedSessionIdValid()
Clarification

The API clarification better describes what happens when a client did not specify a
session id. The API documentation in Section SRV.16.1.3, “HttpServletRequest”
was updated to specify when false is returned. The API documentation now states:

Returns false if the client did not specify any session ID.
.

nal Version

Changes Since Servlet 2.4 298
SRV.19.0.10 SRV.5.5 ("Closure of Response Object") Clarification

The behavior in Section SRV.5.5, “Closure of Response Object” the response's con-
tent length is set to 0 via response.setHeader("Content-Length", "0") and any subse-
quently setHeader() calls are ignored.

Section SRV.5.5, “Closure of Response Object” was updated to allow all head-
ers to be set by changing:

 "The amount of content specified in the setContentLength method of the
response and has been written to the response"

To the following:

"The amount of content specified in the setContentLength method of the
response has been greater than zero and has been written to the response"

SRV.19.0.11 ServletRequest.setCharacterEncoding() Clarified

The API in Section SRV.15.2.16, “ServletRequest” was updated to described the
behavior if the method is called after the getReader() was called. If the getReader()
is called there will be no effect.

SRV.19.0.12 Java Enterprise Edition Requirements

Chapter SRV.14, “Java Enterprise Edition 5 Containers details all requirements of a
Java EE container. Previously the requirements were mixed into each chapter.

SRV.19.0.13 Servlet 2.4 MR Change Log Updates Added

Added the changes from the Servlet 2.4 Maintenance Review. These changes
include grammar and typographical fixes.

SRV.19.0.14 Synchronized Access Session Object Clarified

Section SRV.7.7.1, “Threading Issues” was updated to clarify that access to the ses-
sion object should be synchronized.

CHANGE LOG

Fi

299
SRV.S.20 Changes Since Servlet 2.3

• Optional “X-Powered-By” header is added in the response (5.2)

• Clarification of “overlapping constraint” (12.8.1, 12.8.2)

• Add the section to clarify the process order at the time of web application de-
ployment (9.12)

• Clarification that the security model is also applied to filter (12.2)

• Change the status code from 401 to 200 when FORM authentication is failed
as there is no appropriate error status code in HTTP/1.1 (12.5.3)

• Clarification of the wrapper objects (6.2.2)

• Clarification of overriding the platform classes (9.7.2)

• Clarification of welcome file (9.10)

• Clarification of internationalization - the relationship among setLocale, set-
ContentType, and setCharacterEncoding (5.4, 14.2.22)

• Clarification of ServletRequestListener and ServletRequestAttributeListener
description (14.2.18, 14.2.20)

• Add HttpSessionActivationListener and HttpSessionBindingListener into the
Table 10-1.

• Change the word "auth constraint" to "authorization constraint" (12.8)

• Add “Since” tag in the newly added methods in javadoc(14.2.16, 14.2.22)

• Fix the data type of <session-timeout> to xsdIntegerType in schema(13.3)

• Clarification when the listener throws the unhandled exception(10.6)

• Clarification of the “shared library”(9.7.1)

• Clarification of the container’s mechanism for the extension(9.7.1, third para-
graph)

• HttpSession.logout method was removed. The portable authentication
mechanism will be addressed in the next version of this specification and lo-
gout will also be discussed in that scope.(12.10)

• It is now a recommendation, instead of a requirement, that the reference to the
request and response object should not be given to the object in other threads -
based on the requirement from JSR-168. Warnings are added when the thread
created by the application uses the objects managed by the container.(2.3.3.3)
nal Version

Changes Since Servlet 2.3 300
• It is now a recommendation, that the dispatch should occur in the same thread
of the same JVM as the original request - based on the requirement from JSR-
168(8.2)

• Clarification of “wrap” (6.2.2)

• Clarification of handling the path parameter for the mapping(11.1)

• Add the description about the “HTTP chunk” in HttpServlet.doGet meth-
od(15.1.2)

• J2SE 1.3 is the minimum version of the underlying Java platform with which
servlet containers must be built (1.2)

• Clarification of ServletResponse.setBufferSize method (5.1)

• Clarification of ServletRequest.getServerName and getServerPort (14.2.16.1)

• Clarification of Internationalization (5.4, 14.2.22)

• Clarification of the redirection of the welcome file (9.10)

• Clarification of ServletContextListener.contextInitialized (14.2.12.1)

• Clarification of HttpServletRequest.getRequestedSessionId - making it clear
that it returns the session ID specified by the client (15.1.3.2)

• Clarification of the class loader for the extensions - the class loader must be
the same for all web applications within the same JVM (9.7.1)

• Clarification of the case when ServletRequestListener throws an unhandled
exception (10.6, 14.2.20)

• Clarification of the scope of ServletRequestListener (14.2.20)

• Add the description about the case when the container has a caching mecha-
nism (1.2)

• Validating deployment descriptor against the schema is required for Java EE
containers (13.2)

• Sub elements under <web-app> can be in an arbitrary order (13.2)

• One example of the container’s rejecting the web application was removed
due to the contradiction with SRV.11.1 (9.5)

• url-patternType is changed from j2ee:string to xsd:string (13)

• The sub-elements under <web-app> in deployment descriptor can be in the ar-
bitrary order (13)

CHANGE LOG

Fi

301
• The container must inform a developer with a descriptive error message when
deployment descriptor file contains an illegal character or multiple elements
of <session-config>, <jsp-config>, or <login-config> (13)

• Extensibility of deployment descriptor was removed (13)

• Section SRV.1.6 added - describing the compatibility issue with the previous
version of this specification (1.6)

• New attributes are added in RequestDispatcher.forward method (8.4.2)

• New methods in ServletRequest interface and ServletRequestWrapper
(14.2.16.1)

• The interface SingleThreadModel was deprecated ((2.2.1, 2.3.3.1, 14.2.24)

• Change the name of the method ServletRequestEvent.getRequest to Servle-
tRequestEvent.getServletRequest (14.2.19.2)

• Clarification of the “request” to access to WEB-INF directory (9.5)

• Clarification of the behavior of ServletRequest.setAttribute - change “value”
to “object” in “If the value passed in is null,” (14.2.16.1)

• Fix the inconsistency between this specification and HttpServletRequest, get-
ServletPath - the return value starts with “/” (15.1.3.2)

• Fix the inconsistency between this specification and HttpServletRequest.get-
PathInfo - the return value starts with “/” (15.1.3.2)

• Fix the inconsistency between this specification and HttpServletRequest.get-
PathTranslated - add the case when the container cannot translate the path
(15.1.3.2)

• Allow HttpServletRequest.getAuthType to return not only pre-defined four
authentication scheme but also the container-specific scheme (15.1.3.2)

• Change the behavior of ttpSessionListener.sessionDestroyed to notify before
the session is invalidated (15.1.14.1)

• Fix the wrong status code of 403 to 404 (9.5, 9.6)

• Element “taglib” should be “jsp-config” (13.2)

• Fix the version number of JSP specification to 2.0

Fix the wrong formats (5.5, 6.2.5, 12.8.3, 12.9)
• HTTP/1.1 is now required (1.2)

• <url-pattern> in <web-resource-collection> is mandatory (13.4)
nal Version

Changes Since Servlet 2.3 302
• Clarification of IllegalArgumentException in the distributed environments
(7.7.2)

• Clarification of error page handling (9.9.1, 9.9.2, 9.9.3, 6.2.5)

• Clarification of Security Constraints, especially in the case of overlapping
constraints (12.8)

• Clarification of the case when <session-timeout> element is not specified
(13.4)

• Clarification of the case when the resource is permanently unavailable
(2.3.3.2)

• Add missing getParameterMap() in the enumerated list (4.1)

• Clarification of the status code when /WEB-INF/ resource is accessed (9.5)

• Clarification of the status code when /META-INF/ resource is accessed (9.6)

Change xsd:string to j2ee:string in deployment descriptor (13.4)

• Extensibility of deployment descriptors (SRV.13)

• XML Schema definition of deployment descriptor (SRV.13)

• Request listeners (SRV.10 and API change)
New API: ServletRequestListener, ServletRequestAttributeListener and asso-
ciated event classes

• Ability to use Filters under the Request Dispatcher (6.2.5)

• Required class loader extension mechanism (9.7.1)

• Listener exception handling (10.6)

• Listener order vs. servlet init()/destroy() clarification (ServletContextListener
javadoc change)

• Servlets mapped to WEB-INF / response handling (9.5)

• Request dispatcher / path matching rules (8.1)

• Welcome files can be servlets (9.10)

• Internationalization enhancements (5.4, 14,2,22, 15.1.5)

• SC_FOUND(302) addition (15.1.5)

• “Relative path” in getRequestDispatcher() must be relative against the current
servlet (8.1)

CHANGE LOG

Fi

303
• Bug fix in the example of XML (13.7.2)

• Clarification of access by getResource “only to the resource” (3.5)

• Clarification of SERVER_NAME and SERVER_PORT in getServerName()
and getServerPort() (14.2.16)

• Clarification: “run-as” identity must apply to all calls from a servlet including
init() and destroy() (12.7)

• Login/logout description and methods added (12.10, 15.1.7)
nal Version

A P P E N D I X SRV.A

Deployment Descriptor

Version 2.2

This appendix defines the deployment descriptor for version 2.2. All web containers
are required to support web applications using the 2.2 deployment descriptor.

SRV.A.1 Deployment Descriptor DOCTYPE

All valid web application deployment descriptors must contain the following
DOCTYPE declaration:

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Appli-

cation 2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

SRV.A.2 DTD

The DTD that follows defines the XML grammar for a web application deployment
descriptor.

<!--

The web-app element is the root of the deployment descriptor for a
web application
-->
304

Fi

305
<!ELEMENT web-app (icon?, display-name?, description?,

distributable?, context-param*, servlet*, servlet-mapping*,

session-config?, mime-mapping*, welcome-file-list?, error-page*,

taglib*, resource-ref*, security-constraint*, login-config?,

security-role*, env-entry*, ejb-ref*)>

<!--

The icon element contains a small-icon and a large-icon element
which specify the location within the web application for a small and
large image used to represent the web application in a GUI tool. At a
minimum, tools must accept GIF and JPEG format images.
-->

<!ELEMENT icon (small-icon?, large-icon?)>

<!--

The small-icon element contains the location within the web
application of a file containing a small (16x16 pixel) icon image.
-->

<!ELEMENT small-icon (#PCDATA)>

<!--

The large-icon element contains the location within the web
application of a file containing a large (32x32 pixel) icon image.
-->

<!ELEMENT large-icon (#PCDATA)>

<!--

The display-name element contains a short name that is intended
to be displayed by GUI tools
-->

<!ELEMENT display-name (#PCDATA)>

<!--

The description element is used to provide descriptive text about
the parent element.
-->

<!ELEMENT description (#PCDATA)>

<!--

The distributable element, by its presence in a web application
deployment descriptor, indicates that this web application is
nal Version

306
programmed appropriately to be deployed into a distributed servlet
container
-->

<!ELEMENT distributable EMPTY>

<!--

The context-param element contains the declaration of a web
application’s servlet context initialization parameters.
-->

<!ELEMENT context-param (param-name, param-value, description?)>

<!--

The param-name element contains the name of a parameter.
-->

<!ELEMENT param-name (#PCDATA)>

<!--

The param-value element contains the value of a parameter.
-->

<!ELEMENT param-value (#PCDATA)>

<!--

The servlet element contains the declarative data of a
servlet.
If a jsp-file is specified and the load-on-startup element is
present, then the JSP should be precompiled and loaded.
-->

<!ELEMENT servlet (icon?, servlet-name, display-name?, description?,

(servlet-class|jsp-file), init-param*, load-on-startup?,

security-role-ref*)>

<!--

The servlet-name element contains the canonical name of the
servlet.
-->

<!ELEMENT servlet-name (#PCDATA)>

<!--

The servlet-class element contains the fully qualified class name

Fi

307
of the servlet.
-->

<!ELEMENT servlet-class (#PCDATA)>

<!--

The jsp-file element contains the full path to a JSP file within
the web application.
-->

<!ELEMENT jsp-file (#PCDATA)>

<!--

The init-param element contains a name/value pair as an
initialization param of the servlet
-->

<!ELEMENT init-param (param-name, param-value, description?)>

<!--

The load-on-startup element indicates that this servlet should be
loaded on the startup of the web application.
The optional contents of these element must be a positive integer
indicating the order in which the servlet should be loaded.
Lower integers are loaded before higher integers.
If no value is specified, or if the value specified is not a positive
integer, the container is free to load it at any time in the startup
sequence.
-->

<!ELEMENT load-on-startup (#PCDATA)>

<!--

The servlet-mapping element defines a mapping between a servlet and
a url pattern
-->

<!ELEMENT servlet-mapping (servlet-name, url-pattern)>

<!--

The url-pattern element contains the url pattern of the
mapping. Must follow the rules specified in Section 10 of the Servlet
API Specification.
-->

<!ELEMENT url-pattern (#PCDATA)>
nal Version

308
<!--

The session-config element defines the session parameters for this
web application.
-->

<!ELEMENT session-config (session-timeout?)>

<!--

The session-timeout element defines the default session timeout
interval for all sessions created in this web application.
The specified timeout must be expressed in a whole number of minutes.
-->

<!ELEMENT session-timeout (#PCDATA)>

<!--

The mime-mapping element defines a mapping between an extension and
a mime type.
-->

<!ELEMENT mime-mapping (extension, mime-type)>

<!--

The extension element contains a string describing an
extension. example: "txt"
-->

<!ELEMENT extension (#PCDATA)>

<!--

The mime-type element contains a defined mime type. example: "text/
plain"
-->

<!ELEMENT mime-type (#PCDATA)>

<!--

The welcome-file-list contains an ordered list of welcome files
elements.
-->

<!ELEMENT welcome-file-list (welcome-file+)>

Fi

309
<!--

The welcome-file element contains file name to use as a default
welcome file, such as index.html
-->

<!ELEMENT welcome-file (#PCDATA)>

<!--

The taglib element is used to describe a JSP tag library.
-->

<!ELEMENT taglib (taglib-uri, taglib-location)>

<!--

The taglib-uri element describes a URI, relative to the location of
the web.xml document, identifying a Tag Library used in the Web
Application.
-->

<!ELEMENT taglib-uri (#PCDATA)>

<!--

the taglib-location element contains the location (as a resource
relative to the root of the web application) where to find the Tag
Libary Description file for the tag library.
-->

<!ELEMENT taglib-location (#PCDATA)>

<!--

The error-page element contains a mapping between an error code or
exception type to the path of a resource in the web application
-->

<!ELEMENT error-page ((error-code | exception-type), location)>

<!--

The error-code contains an HTTP error code, ex: 404
-->

<!ELEMENT error-code (#PCDATA)>

<!--

The exception type contains a fully qualified class name of a Java
exception type.
-->
nal Version

310
<!ELEMENT exception-type (#PCDATA)>

<!--

The location element contains the location of the resource in the
web application
-->

<!ELEMENT location (#PCDATA)>

<!--

The resource-ref element contains a declaration of a Web
Application’s reference to an external resource.
-->

<!ELEMENT resource-ref (description?, res-ref-name, res-type, res-

auth)>

<!--

The res-ref-name element specifies the name of the resource factory
reference name.
-->

<!ELEMENT res-ref-name (#PCDATA)>

<!--

The res-type element specifies the (Java class) type of the data
source.
-->

<!ELEMENT res-type (#PCDATA)>

<!--

The res-auth element indicates whether the application component
code performs resource signon programmatically or whether the
container signs onto the resource based on the principle mapping
information supplied by the deployer.

Must be CONTAINER or SERVLET
-->

<!ELEMENT res-auth (#PCDATA)>

<!--

The security-constraint element is used to associate security
constraints with one or more web resource collections
-->

Fi

311
<!ELEMENT security-constraint (web-resource-collection+, auth-

constraint?, user-data-constraint?)>

<!--

The web-resource-collection element is used to identify a subset of
the resources and HTTP methods on those resources within a web
application to which a security constraint applies.
If no HTTP methods are specified, then the security constraint
applies to all HTTP methods.
-->

<!ELEMENT web-resource-collection (web-resource-name, description?,

url-pattern*, http-method*)>

<!--

The web-resource-name contains the name of this web resource
collection
-->

<!ELEMENT web-resource-name (#PCDATA)>

<!--

The http-method contains an HTTP method (GET | POST |...)
-->

<!ELEMENT http-method (#PCDATA)>

<!--

The user-data-constraint element is used to indicate how data
communicated between the client and container should be protected
-->

<!ELEMENT user-data-constraint (description?, transport-guarantee)>

<!--

The transport-guarantee element specifies that the communication
between client and server should be NONE, INTEGRAL, or CONFIDENTIAL.
NONE means that the application does not require any transport
guarantees.
A value of INTEGRAL means that the application requires that the data
sent between the client and server be sent in such a way that it
can’t be changed in transit.
CONFIDENTIAL means that the application requires that the data be
transmitted in a fashion that prevents other entities from observing
the contents of the transmission.
nal Version

312
In most cases, the presence of the INTEGRAL or CONFIDENTIAL flag will
indicate that the use of SSL is required.
-->

<!ELEMENT transport-guarantee (#PCDATA)>

<!--

The auth-constraint element indicates the user roles that should be
permitted access to this resource collection.
The role used here must appear in a security-role-ref element.
-->

<!ELEMENT auth-constraint (description?, role-name*)>

<!--

The role-name element contains the name of a security role.
-->

<!ELEMENT role-name (#PCDATA)>

<!--

The login-config element is used to configure the authentication
method that should be used, the realm name that should be used for
this application, and the attributes that are needed by the form
login mechanism.
-->

<!ELEMENT login-config (auth-method?, realm-name?, form-login-

config?)>

<!--

The realm name element specifies the realm name to use in HTTP Basic
authorization
-->

<!ELEMENT realm-name (#PCDATA)>

<!--

The form-login-config element specifies the login and error pages
that should be used in form based login.
If form based authentication is not used, these elements are ignored.
-->

<!ELEMENT form-login-config (form-login-page, form-error-page)>

Fi

313
<!--

The form-login-page element defines the location in the web app where
the page that can be used for login can be found
-->

<!ELEMENT form-login-page (#PCDATA)>

<!--

The form-error-page element defines the location in the web app where
the error page that is displayed when login is not successful can be
found
-->

<!ELEMENT form-error-page (#PCDATA)>

<!--

The auth-method element is used to configure the authentication
mechanism for the web application.
As a prerequisite to gaining access to any web resources which are
protected by an authorization constraint, a user must have
mechanism.
Legal values for this element are "BASIC", "DIGEST", "FORM", or
"CLIENT-CERT".
-->

<!ELEMENT auth-method (#PCDATA)>

<!--

The security-role element contains the declaration of a security role
which is used in the security-constraints placed on the web
application.
-->

<!ELEMENT security-role (description?, role-name)>

<!--

The role-name element contains the name of a role. This element must
contain a non-empty string.
-->

<!ELEMENT security-role-ref (description?, role-name, role-link)>

<!--

The role-link element is used to link a security role reference to
a defined security role.
nal Version

314
The role-link element must contain the name of one of the security
roles defined in the security-role elements.
-->

<!ELEMENT role-link (#PCDATA)>

<!--

The env-entry element contains the declaration of an application’s
environment entry.
This element is required to be honored on in J2EE compliant servlet
containers.
-->

<!ELEMENT env-entry (description?, env-entry-name, env-entry-

value?, env-entry-type)>

<!--

The env-entry-name contains the name of an application’s environment
entry
-->

<!ELEMENT env-entry-name (#PCDATA)>

<!--

The env-entry-value element contains the value of an application’s
environment entry
-->

<!ELEMENT env-entry-value (#PCDATA)>

<!--

The env-entry-type element contains the fully qualified Java type of
the environment entry value that is expected by the application
code.
The following are the legal values of env-entry-type:
java.lang.Boolean, java.lang.String, java.lang.Integer,
java.lang.Double, java.lang.Float.
-->

<!ELEMENT env-entry-type (#PCDATA)>

<!--

The ejb-ref element is used to declare a reference to an enterprise
bean.
-->

Fi

315
<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,

remote, ejb-link?)>

<!--

The ejb-ref-name element contains the name of an EJB
reference. This is the JNDI name that the servlet code uses to get a
reference to the enterprise bean.
-->

<!ELEMENT ejb-ref-name (#PCDATA)>

<!--

The ejb-ref-type element contains the expected java class type of
the referenced EJB.
-->

<!ELEMENT ejb-ref-type (#PCDATA)>

<!--

The ejb-home element contains the fully qualified name of the EJB’s
home interface
-->

<!ELEMENT home (#PCDATA)>

<!--

The ejb-remote element contains the fully qualified name of the EJB’s
remote interface
-->

<!ELEMENT remote (#PCDATA)>

<!--

The ejb-link element is used in the ejb-ref element to specify that
an EJB reference is linked to an EJB in an encompassing Java2
Enterprise Edition (J2EE) application package.
The value of the ejb-link element must be the ejb-name of and EJB in
the J2EE application package.
-->

<!ELEMENT ejb-link (#PCDATA)>

<!--

The ID mechanism is to allow tools to easily make tool-specific
references to the elements of the deployment descriptor.
nal Version

316
This allows tools that produce additional deployment information
(i.e information beyond the standard deployment descriptor
information) to store the non-standard information in a separate
file, and easily refer from these tools-specific files to the
information in the standard web-app deployment descriptor.
-->

<!ATTLIST web-app id ID #IMPLIED>
<!ATTLIST icon id ID #IMPLIED>
<!ATTLIST small-icon id ID #IMPLIED>
<!ATTLIST large-icon id ID #IMPLIED>
<!ATTLIST display-name id ID #IMPLIED>
<!ATTLIST description id ID #IMPLIED>
<!ATTLIST distributable id ID #IMPLIED>
<!ATTLIST context-param id ID #IMPLIED>
<!ATTLIST param-name id ID #IMPLIED>
<!ATTLIST param-value id ID #IMPLIED>
<!ATTLIST servlet id ID #IMPLIED>
<!ATTLIST servlet-name id ID #IMPLIED>
<!ATTLIST servlet-class id ID #IMPLIED>
<!ATTLIST jsp-file id ID #IMPLIED>
<!ATTLIST init-param id ID #IMPLIED>
<!ATTLIST load-on-startup id ID #IMPLIED>
<!ATTLIST servlet-mapping id ID #IMPLIED>
<!ATTLIST url-pattern id ID #IMPLIED>
<!ATTLIST session-config id ID #IMPLIED>
<!ATTLIST session-timeout id ID #IMPLIED>
<!ATTLIST mime-mapping id ID #IMPLIED>
<!ATTLIST extension id ID #IMPLIED>
<!ATTLIST mime-type id ID #IMPLIED>
<!ATTLIST welcome-file-list id ID #IMPLIED>
<!ATTLIST welcome-file id ID #IMPLIED>
<!ATTLIST taglib id ID #IMPLIED>
<!ATTLIST taglib-uri id ID #IMPLIED>
<!ATTLIST taglib-location id ID #IMPLIED>
<!ATTLIST error-page id ID #IMPLIED>
<!ATTLIST error-code id ID #IMPLIED>
<!ATTLIST exception-type id ID #IMPLIED>
<!ATTLIST location id ID #IMPLIED>
<!ATTLIST resource-ref id ID #IMPLIED>
<!ATTLIST res-ref-name id ID #IMPLIED>
<!ATTLIST res-type id ID #IMPLIED>
<!ATTLIST res-auth id ID #IMPLIED>
<!ATTLIST security-constraint id ID #IMPLIED>
<!ATTLIST web-resource-collection id ID #IMPLIED>
<!ATTLIST web-resource-name id ID #IMPLIED>
<!ATTLIST http-method id ID #IMPLIED>
<!ATTLIST user-data-constraint id ID #IMPLIED>

Fi

317
<!ATTLIST transport-guarantee id ID #IMPLIED>
<!ATTLIST auth-constraint id ID #IMPLIED>
<!ATTLIST role-name id ID #IMPLIED>
<!ATTLIST login-config id ID #IMPLIED>
<!ATTLIST realm-name id ID #IMPLIED>
<!ATTLIST form-login-config id ID #IMPLIED>
<!ATTLIST form-login-page id ID #IMPLIED>
<!ATTLIST form-error-page id ID #IMPLIED>
<!ATTLIST auth-method id ID #IMPLIED>
<!ATTLIST security-role id ID #IMPLIED>
<!ATTLIST security-role-ref id ID #IMPLIED>
<!ATTLIST role-link id ID #IMPLIED>
<!ATTLIST env-entry id ID #IMPLIED>
<!ATTLIST env-entry-name id ID #IMPLIED>
<!ATTLIST env-entry-value id ID #IMPLIED>
<!ATTLIST env-entry-type id ID #IMPLIED>
<!ATTLIST ejb-ref id ID #IMPLIED>
<!ATTLIST ejb-ref-name id ID #IMPLIED>
<!ATTLIST ejb-ref-type id ID #IMPLIED>
<!ATTLIST home id ID #IMPLIED>
<!ATTLIST remote id ID #IMPLIED>
<!ATTLIST ejb-link id ID #IMPLIED>
nal Version

A P P E N D I X SRV.B

Deployment Descriptor

Version 2.3

This appendix defines the deployment descriptor for version 2.3. All web containers
are required to support web applications using the 2.3 deployment descriptor.

SRV.B.1 Deployment Descriptor DOCTYPE

All valid web application deployment descriptors for version 2.3 of this
specification must contain the following DOCTYPE declaration:

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web

Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">

SRV.B.2 DTD

The DTD that follows defines the XML grammar for a web application deployment
descriptor.

<!--

The web-app element is the root of the deployment descriptor for

a web application.

-->
318

Fi

319
<!ELEMENT web-app (icon?, display-name?, description?,

distributable?, context-param*, filter*, filter-mapping*,

listener*, servlet*, servlet-mapping*, session-config?, mime-

mapping*, welcome-file-list?, error-page*, taglib*, resource-

env-ref*, resource-ref*, security-constraint*, login-config?,

security-role*, env-entry*, ejb-ref*, ejb-local-ref*)>

<!--

The auth-constraint element indicates the user roles that should

be permitted access to this resource collection. The role-name

used here must either correspond to the role-name of one of the

security-role elements defined for this web application, or be

the specially reserved role-name "*" that is a compact syntax for

indicating all roles in the web application. If both "*" and

rolenames appear, the container interprets this as all roles.

If no roles are defined, no user is allowed access to the portion of

the web application described by the containing security-constraint.

The container matches role names case sensitively when determining

access.

Used in: security-constraint

-->

<!ELEMENT auth-constraint (description?, role-name*)>

<!--

The auth-method element is used to configure the authentication

mechanism for the web application. As a prerequisite to gaining

access to any web resources which are protected by an authorization

constraint, a user must have authenticated using the configured

mechanism. Legal values for this element are "BASIC", "DIGEST",

"FORM", or "CLIENT-CERT".

Used in: login-config

-->

<!ELEMENT auth-method (#PCDATA)>

<!--

The context-param element contains the declaration of a web

application’s servlet context initialization parameters.

Used in: web-app

-->
nal Version

320
<!ELEMENT context-param (param-name, param-value, description?)>

<!--

The description element is used to provide text describing the parent

element. The description element should include any information that

the web application war file producer wants to provide to the

consumer of the web application war file (i.e., to the Deployer).

Typically, the tools used by the web application war file consumer

will display the description when processing the parent element that

contains the description.

Used in: auth-constraint, context-param, ejb-local-ref, ejb-ref,

env-entry, filter, init-param, resource-env-ref, resource-ref, run-

as, security-role, security-role-ref, servlet, user-data-

constraint, web-app, web-resource-collection

-->

<!ELEMENT description (#PCDATA)>

<!--

The display-name element contains a short name that is intended to be

displayed by tools. The display name need not be unique.

Used in: filter, security-constraint, servlet, web-app

Example:

<display-name>Employee Self Service</display-name>

-->

<!ELEMENT display-name (#PCDATA)>

<!--

The distributable element, by its presence in a web application

deployment descriptor, indicates that this web application is

programmed appropriately to be deployed into a distributed servlet

container

Used in: web-app

-->

<!ELEMENT distributable EMPTY>

<!--

The ejb-link element is used in the ejb-ref or ejb-local-ref

Fi

321
elements to specify that an EJB reference is linked to an

enterprise bean.

The name in the ejb-link element is composed of a

path name specifying the ejb-jar containing the referenced

enterprise bean with the ejb-name of the target bean appended and

separated from the path name by "#". The path name is relative to

the war file containing the web application that is referencing the

enterprise bean.

This allows multiple enterprise beans with the same ejb-name to be

uniquely identified.

Used in: ejb-local-ref, ejb-ref

Examples:

<ejb-link>EmployeeRecord</ejb-link>

<ejb-link>../products/product.jar#ProductEJB</ejb-link>

-->

<!ELEMENT ejb-link (#PCDATA)>

<!--

The ejb-local-ref element is used for the declaration of a reference

to an enterprise bean’s local home. The declaration consists of:

- an optional description

- the EJB reference name used in the code of the web application

 that’s referencing the enterprise bean

- the expected type of the referenced enterprise bean

- the expected local home and local interfaces of the referenced

 enterprise bean

- optional ejb-link information, used to specify the referenced

 enterprise bean

Used in: web-app

-->

<!ELEMENT ejb-local-ref (description?, ejb-ref-name, ejb-ref-type,

local-home, local, ejb-link?)>

<!--
nal Version

322
The ejb-ref element is used for the declaration of a reference to

an enterprise bean’s home. The declaration consists of:

- an optional description

- the EJB reference name used in the code of

 the web application that’s referencing the enterprise bean

- the expected type of the referenced enterprise bean

- the expected home and remote interfaces of the referenced

 enterprise bean

- optional ejb-link information, used to specify the referenced

 enterprise bean

Used in: web-app

-->

<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,

remote, ejb-link?)>

<!--

The ejb-ref-name element contains the name of an EJB reference. The

EJB reference is an entry in the web application’s environment and is

relative to the java:comp/env context. The name must be unique

within the web application.

It is recommended that name is prefixed with "ejb/".

Used in: ejb-local-ref, ejb-ref

Example:

<ejb-ref-name>ejb/Payroll</ejb-ref-name>

-->

<!ELEMENT ejb-ref-name (#PCDATA)>

<!--

The ejb-ref-type element contains the expected type of the

referenced enterprise bean.

The ejb-ref-type element must be one of the following:

<ejb-ref-type>Entity</ejb-ref-type>

<ejb-ref-type>Session</ejb-ref-type>

Used in: ejb-local-ref, ejb-ref

Fi

323
-->

<!ELEMENT ejb-ref-type (#PCDATA)>

<!--

The env-entry element contains the declaration of a web application’s

environment entry. The declaration consists of an optional

description, the name of the environment entry, and an optional

value. If a value is not specified, one must be supplied

during deployment.

-->

<!ELEMENT env-entry (description?, env-entry-name, env-entry-

value?, env-entry-type)>

<!--

The env-entry-name element contains the name of a web applications’s

environment entry. The name is a JNDI name relative to the

java:comp/env context. The name must be unique within a web

application.

Example:

<env-entry-name>minAmount</env-entry-name>

Used in: env-entry

-->

<!ELEMENT env-entry-name (#PCDATA)>

<!--

The env-entry-type element contains the fully-qualified Java type of

the environment entry value that is expected by the web application’s

code.

The following are the legal values of env-entry-type:

java.lang.Boolean

java.lang.Byte

java.lang.Character

java.lang.String

java.lang.Short

java.lang.Integer

java.lang.Long

java.lang.Float
nal Version

324
java.lang.Double

Used in: env-entry

-->

<!ELEMENT env-entry-type (#PCDATA)>

<!--

The env-entry-value element contains the value of a web application’s

environment entry. The value must be a String that is valid for the

constructor of the specified type that takes a single String

parameter, or for java.lang.Character, a single character.

Example:

<env-entry-value>100.00</env-entry-value>

Used in: env-entry

-->

<!ELEMENT env-entry-value (#PCDATA)>

<!--

The error-code contains an HTTP error code, ex: 404

Used in: error-page

-->

<!ELEMENT error-code (#PCDATA)>

<!--

The error-page element contains a mapping between an error code

or exception type to the path of a resource in the web application

Used in: web-app

-->

<!ELEMENT error-page ((error-code | exception-type), location)>

<!--

The exception type contains a fully qualified class name of a

Java exception type.

Used in: error-page

-->

Fi

325
<!ELEMENT exception-type (#PCDATA)>

<!--

The extension element contains a string describing an

extension. example: "txt"

Used in: mime-mapping

-->

<!ELEMENT extension (#PCDATA)>

<!--

Declares a filter in the web application. The filter is mapped to

either a servlet or a URL pattern in the filter-mapping element,

using the filter-name value to reference. Filters can access the

initialization parameters declared in the deployment descriptor at

runtime via the FilterConfig interface.

Used in: web-app

-->

<!ELEMENT filter (icon?, filter-name, display-name?, description?,

filter-class, init-param*)>

<!--

The fully qualified classname of the filter.

Used in: filter

-->

<!ELEMENT filter-class (#PCDATA)>

<!--

Declaration of the filter mappings in this web application. The

container uses the filter-mapping declarations to decide which

filters to apply to a request, and in what order. The container

matches the request URI to a Servlet in the normal way. To determine

which filters to apply it matches filter-mapping declarations either

on servlet-name, or on url-pattern for each filter-mapping element,

depending on which style is used. The order in which filters are

invoked is the order in which filter-mapping declarations that match

a request URI for a servlet appear in the list of filter-mapping

elements.The filter-name value must be the value of the <filter-name>

sub-elements of one of the <filter> declarations in the deployment

descriptor.
nal Version

326
Used in: web-app

-->

<!ELEMENT filter-mapping (filter-name, (url-pattern | servlet-

name))>

<!--

The logical name of the filter. This name is used to map the filter.

Each filter name is unique within the web application.

Used in: filter, filter-mapping

-->

<!ELEMENT filter-name (#PCDATA)>

<!--

The form-error-page element defines the location in the web app

where the error page that is displayed when login is not successful

can be found. The path begins with a leading / and is interpreted

relative to the root of the WAR.

Used in: form-login-config

-->

<!ELEMENT form-error-page (#PCDATA)>

<!--

The form-login-config element specifies the login and error pages

that should be used in form based login. If form based authentication

is not used, these elements are ignored.

Used in: login-config

-->

<!ELEMENT form-login-config (form-login-page, form-error-page)>

<!--

The form-login-page element defines the location in the web app

where the page that can be used for login can be found. The path

begins with a leading / and is interpreted relative to the root of

the WAR.

Used in: form-login-config

-->

Fi

327
<!ELEMENT form-login-page (#PCDATA)>

<!--

The home element contains the fully-qualified name of the enterprise

bean’s home interface.

Used in: ejb-ref

Example:

<home>com.aardvark.payroll.PayrollHome</home>

-->

<!ELEMENT home (#PCDATA)>

<!--

The http-method contains an HTTP method (GET | POST |...).

Used in: web-resource-collection

-->

<!ELEMENT http-method (#PCDATA)>

<!--

The icon element contains small-icon and large-icon elements that

specify the file names for small and a large GIF or JPEG icon images

used to represent the parent element in a GUI tool.

Used in: filter, servlet, web-app

-->

<!ELEMENT icon (small-icon?, large-icon?)>

<!--

The init-param element contains a name/value pair as an

initialization param of the servlet

Used in: filter, servlet

-->

<!ELEMENT init-param (param-name, param-value, description?)>

<!--

The jsp-file element contains the full path to a JSP file within

the web application beginning with a ‘/’.
nal Version

328
Used in: servlet

-->

<!ELEMENT jsp-file (#PCDATA)>

<!--

The large-icon element contains the name of a file

containing a large (32 x 32) icon image. The file

name is a relative path within the web application’s

war file.

The image may be either in the JPEG or GIF format.

The icon can be used by tools.

Used in: icon

Example:

<large-icon>employee-service-icon32x32.jpg</large-icon>

-->

<!ELEMENT large-icon (#PCDATA)>

<!--

The listener element indicates the deployment properties for a web

application listener bean.

Used in: web-app

-->

<!ELEMENT listener (listener-class)>

<!--

The listener-class element declares a class in the application must

be registered as a web application listener bean. The value is the

fully qualified classname of the listener class.

Used in: listener

-->

<!ELEMENT listener-class (#PCDATA)>

<!--

The load-on-startup element indicates that this servlet should be

Fi

329
loaded (instantiated and have its init() called) on the startup

of the web application. The optional contents of

these element must be an integer indicating the order in which

the servlet should be loaded. If the value is a negative integer,

or the element is not present, the container is free to load the

servlet whenever it chooses. If the value is a positive integer

or 0, the container must load and initialize the servlet as the

application is deployed. The container must guarantee that

servlets marked with lower integers are loaded before servlets

marked with higher integers. The container may choose the order

of loading of servlets with the same load-on-start-up value.

Used in: servlet

-->

<!ELEMENT load-on-startup (#PCDATA)>

<!--

The local element contains the fully-qualified name of the

enterprise bean’s local interface.

Used in: ejb-local-ref

-->

<!ELEMENT local (#PCDATA)>

<!--

The local-home element contains the fully-qualified name of the

enterprise bean’s local home interface.

Used in: ejb-local-ref

-->

<!ELEMENT local-home (#PCDATA)>

<!--

The location element contains the location of the resource in the web

application relative to the root of the web application. The value of

the location must have a leading ‘/’.

Used in: error-page

-->

<!ELEMENT location (#PCDATA)>
nal Version

330
<!--

The login-config element is used to configure the authentication

method that should be used, the realm name that should be used for

this application, and the attributes that are needed by the form

login mechanism.

Used in: web-app

-->

<!ELEMENT login-config (auth-method?, realm-name?, form-login-

config?)>

<!--

The mime-mapping element defines a mapping between an extension

and a mime type.

Used in: web-app

-->

<!ELEMENT mime-mapping (extension, mime-type)>

<!--

The mime-type element contains a defined mime type. example:

"text/plain"

Used in: mime-mapping

-->

<!ELEMENT mime-type (#PCDATA)>

<!--

The param-name element contains the name of a parameter. Each

parameter name must be unique in the web application.

Used in: context-param, init-param

-->

<!ELEMENT param-name (#PCDATA)>

<!--

The param-value element contains the value of a parameter.

Used in: context-param, init-param

-->

Fi

331
<!ELEMENT param-value (#PCDATA)>

<!--

The realm name element specifies the realm name to use in HTTP

Basic authorization.

Used in: login-config

-->

<!ELEMENT realm-name (#PCDATA)>

<!--

The remote element contains the fully-qualified name of the

enterprise bean’s remote interface.

Used in: ejb-ref

Example:

<remote>com.wombat.empl.EmployeeService</remote>

-->

<!ELEMENT remote (#PCDATA)>

<!--

The res-auth element specifies whether the web application code signs

on programmatically to the resource manager, or whether the Container

will sign on to the resource manager on behalf of the web

application. In the latter case, the Container uses information that

is supplied by the Deployer.

The value of this element must be one of the two following:

<res-auth>Application</res-auth>

<res-auth>Container</res-auth>

Used in: resource-ref

-->

<!ELEMENT res-auth (#PCDATA)>

<!--

The res-ref-name element specifies the name of a resource manager
nal Version

332
connection factory reference. The name is a JNDI name relative to

the

java:comp/env context. The name must be unique within a web

application.

Used in: resource-ref

-->

<!ELEMENT res-ref-name (#PCDATA)>

<!--

The res-sharing-scope element specifies whether connections obtained

through the given resource manager connection factory reference can

be

shared. The value of this element, if specified, must be one of the

two following:

<res-sharing-scope>Shareable</res-sharing-scope>

<res-sharing-scope>Unshareable</res-sharing-scope>

The default value is Shareable.

Used in: resource-ref

-->

<!ELEMENT res-sharing-scope (#PCDATA)>

<!--

The res-type element specifies the type of the data source. The type

is specified by the fully qualified Java language class or interface

expected to be implemented by the data source.

Used in: resource-ref

-->

<!ELEMENT res-type (#PCDATA)>

<!--

The resource-env-ref element contains a declaration of a web

application’s reference to an administered object associated with a

resource in the web application’s environment. It consists of an

optional description, the resource environment reference name, and

an indication of the resource environment reference type expected by

the web application code.

Used in: web-app

Fi

333
Example:

<resource-env-ref>

 <resource-env-ref-name>jms/StockQueue</resource-env-ref-name>

 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>

</resource-env-ref>

-->

<!ELEMENT resource-env-ref (description?, resource-env-ref-name,

resource-env-ref-type)>

<!--

The resource-env-ref-name element specifies the name of a resource

environment reference; its value is the environment entry name used

in the web application code. The name is a JNDI name relative to the

java:comp/env context and must be unique within a web application.

Used in: resource-env-ref

-->

<!ELEMENT resource-env-ref-name (#PCDATA)>

<!--

The resource-env-ref-type element specifies the type of a resource

environment reference. It is the fully qualified name of a Java

language class or interface.

Used in: resource-env-ref

-->

<!ELEMENT resource-env-ref-type (#PCDATA)>

<!--

The resource-ref element contains a declaration of a web

application’s reference to an external resource. It consists of an

optional description, the resource manager connection factory

reference name, the indication of the resource manager connection

factory type expected by the web application code, the type of

authentication (Application or Container), and an optional

specification of the shareability of connections obtained from the

resource (Shareable or Unshareable).

Used in: web-app
nal Version

334
Example:

 <resource-ref>

<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

<res-sharing-scope>Shareable</res-sharing-scope>

 </resource-ref>

-->

<!ELEMENT resource-ref (description?, res-ref-name, res-type, res-

auth, res-sharing-scope?)>

<!--

The role-link element is a reference to a defined security role. The

role-link element must contain the name of one of the security roles

defined in the security-role elements.

Used in: security-role-ref

-->

<!ELEMENT role-link (#PCDATA)>

<!--

The role-name element contains the name of a security role.

The name must conform to the lexical rules for an NMTOKEN.

Used in: auth-constraint, run-as, security-role, security-role-ref

-->

<!ELEMENT role-name (#PCDATA)>

<!--

The run-as element specifies the run-as identity to be used for the

execution of the web application. It contains an optional

description, and

the name of a security role.

Used in: servlet

-->

<!ELEMENT run-as (description?, role-name)>

<!--

Fi

335
The security-constraint element is used to associate security

constraints with one or more web resource collections

Used in: web-app

-->

<!ELEMENT security-constraint (display-name?, web-resource-

collection+, auth-constraint?, user-data-constraint?)>

<!--

The security-role element contains the definition of a security

role. The definition consists of an optional description of the

security role, and the security role name.

Used in: web-app

Example:

 <security-role>

<description>

 This role includes all employees who are authorized

 to access the employee service application.

</description>

<role-name>employee</role-name>

 </security-role>

-->

<!ELEMENT security-role (description?, role-name)>

<!--

The security-role-ref element contains the declaration of a security

role reference in the web application’s code. The declaration

consists

of an optional description, the security role name used in the code,

and an optional link to a security role. If the security role is not

specified, the Deployer must choose an appropriate security role.

The value of the role-name element must be the String used as the

parameter to the EJBContext.isCallerInRole(String roleName) method

or the HttpServletRequest.isUserInRole(String role) method.

Used in: servlet

-->
nal Version

336
<!ELEMENT security-role-ref (description?, role-name, role-link?)>

<!--

The servlet element contains the declarative data of a

servlet. If a jsp-file is specified and the load-on-startup element

is present, then the JSP should be precompiled and loaded.

Used in: web-app

-->

<!ELEMENT servlet (icon?, servlet-name, display-name?, description?,

(servlet-class|jsp-file), init-param*, load-on-startup?, run-

as?, security-role-ref*)>

<!--

The servlet-class element contains the fully qualified class name

of the servlet.

Used in: servlet

-->

<!ELEMENT servlet-class (#PCDATA)>

<!--

The servlet-mapping element defines a mapping between a servlet

and a url pattern

Used in: web-app

-->

<!ELEMENT servlet-mapping (servlet-name, url-pattern)>

<!--

The servlet-name element contains the canonical name of the

servlet. Each servlet name is unique within the web application.

Used in: filter-mapping, servlet, servlet-mapping

-->

<!ELEMENT servlet-name (#PCDATA)>

<!--

The session-config element defines the session parameters for

this web application.

Fi

337
Used in: web-app

-->

<!ELEMENT session-config (session-timeout?)>

<!--

The session-timeout element defines the default session timeout

interval for all sessions created in this web application. The

specified timeout must be expressed in a whole number of minutes.

If the timeout is 0 or less, the container ensures the default

behaviour of sessions is never to time out.

Used in: session-config

-->

<!ELEMENT session-timeout (#PCDATA)>

<!--

The small-icon element contains the name of a file

containing a small (16 x 16) icon image. The file

name is a relative path within the web application’s

war file.

The image may be either in the JPEG or GIF format.

The icon can be used by tools.

Used in: icon

Example:

<small-icon>employee-service-icon16x16.jpg</small-icon>

-->

<!ELEMENT small-icon (#PCDATA)>

<!--

The taglib element is used to describe a JSP tag library.

Used in: web-app

-->

<!ELEMENT taglib (taglib-uri, taglib-location)>

<!--
nal Version

338
the taglib-location element contains the location (as a resource

relative to the root of the web application) where to find the Tag

Libary Description file for the tag library.

Used in: taglib

-->

<!ELEMENT taglib-location (#PCDATA)>

<!--

The taglib-uri element describes a URI, relative to the location

of the web.xml document, identifying a Tag Library used in the Web

Application.

Used in: taglib

-->

<!ELEMENT taglib-uri (#PCDATA)>

<!--

The transport-guarantee element specifies that the communication

between client and server should be NONE, INTEGRAL, or

CONFIDENTIAL. NONE means that the application does not require any

transport guarantees. A value of INTEGRAL means that the application

requires that the data sent between the client and server be sent in

such a way that it can’t be changed in transit. CONFIDENTIAL means

that the application requires that the data be transmitted in a

fashion that prevents other entities from observing the contents of

the transmission. In most cases, the presence of the INTEGRAL or

CONFIDENTIAL flag will indicate that the use of SSL is required.

Used in: user-data-constraint

-->

<!ELEMENT transport-guarantee (#PCDATA)>

<!--

The url-pattern element contains the url pattern of the mapping. Must

follow the rules specified in Section 11.2 of the Servlet API

Specification.

Used in: filter-mapping, servlet-mapping, web-resource-collection

-->

<!ELEMENT url-pattern (#PCDATA)>

Fi

339
<!--

The user-data-constraint element is used to indicate how data

communicated between the client and container should be protected.

Used in: security-constraint

-->

<!ELEMENT user-data-constraint (description?, transport-guarantee)>

<!--

The web-resource-collection element is used to identify a subset

of the resources and HTTP methods on those resources within a web

application to which a security constraint applies. If no HTTP

methods are specified, then the security constraint applies to all

HTTP methods.

Used in: security-constraint

-->

<!ELEMENT web-resource-collection (web-resource-name, description?,

url-pattern*, http-method*)>

<!--

The web-resource-name contains the name of this web resource

collection.

Used in: web-resource-collection

-->

<!ELEMENT web-resource-name (#PCDATA)>

<!--

The welcome-file element contains file name to use as a default

welcome file, such as index.html

Used in: welcome-file-list

-->

<!ELEMENT welcome-file (#PCDATA)>

<!--

The welcome-file-list contains an ordered list of welcome files

elements.
nal Version

340
Used in: web-app

-->

<!ELEMENT welcome-file-list (welcome-file+)>

<!--

The ID mechanism is to allow tools that produce additional deployment

information (i.e., information beyond the standard deployment

descriptor information) to store the non-standard information in a

separate file, and easily refer from these tool-specific files to the

information in the standard deployment descriptor.

Tools are not allowed to add the non-standard information into the

standard deployment descriptor.

-->

<!ATTLIST auth-constraint id ID #IMPLIED>

<!ATTLIST auth-method id ID #IMPLIED>

<!ATTLIST context-param id ID #IMPLIED>

<!ATTLIST description id ID #IMPLIED>

<!ATTLIST display-name id ID #IMPLIED>

<!ATTLIST distributable id ID #IMPLIED>

<!ATTLIST ejb-link id ID #IMPLIED>

<!ATTLIST ejb-local-ref id ID #IMPLIED>

<!ATTLIST ejb-ref id ID #IMPLIED>

<!ATTLIST ejb-ref-name id ID #IMPLIED>

<!ATTLIST ejb-ref-type id ID #IMPLIED>

<!ATTLIST env-entry id ID #IMPLIED>

<!ATTLIST env-entry-name id ID #IMPLIED>

<!ATTLIST env-entry-type id ID #IMPLIED>

Fi

341
<!ATTLIST env-entry-value id ID #IMPLIED>

<!ATTLIST error-code id ID #IMPLIED>

<!ATTLIST error-page id ID #IMPLIED>

<!ATTLIST exception-type id ID #IMPLIED>

<!ATTLIST extension id ID #IMPLIED>

<!ATTLIST filter id ID #IMPLIED>

<!ATTLIST filter-class id ID #IMPLIED>

<!ATTLIST filter-mapping id ID #IMPLIED>

<!ATTLIST filter-name id ID #IMPLIED>

<!ATTLIST form-error-page id ID #IMPLIED>

<!ATTLIST form-login-config id ID #IMPLIED>

<!ATTLIST form-login-page id ID #IMPLIED>

<!ATTLIST home id ID #IMPLIED>

<!ATTLIST http-method id ID #IMPLIED>

<!ATTLIST icon id ID #IMPLIED>

<!ATTLIST init-param id ID #IMPLIED>

<!ATTLIST jsp-file id ID #IMPLIED>

<!ATTLIST large-icon id ID #IMPLIED>

<!ATTLIST listener id ID #IMPLIED>

<!ATTLIST listener-class id ID #IMPLIED>

<!ATTLIST load-on-startup id ID #IMPLIED>

<!ATTLIST local id ID #IMPLIED>

<!ATTLIST local-home id ID #IMPLIED>
nal Version

342
<!ATTLIST location id ID #IMPLIED>

<!ATTLIST login-config id ID #IMPLIED>

<!ATTLIST mime-mapping id ID #IMPLIED>

<!ATTLIST mime-type id ID #IMPLIED>

<!ATTLIST param-name id ID #IMPLIED>

<!ATTLIST param-value id ID #IMPLIED>

<!ATTLIST realm-name id ID #IMPLIED>

<!ATTLIST remote id ID #IMPLIED>

<!ATTLIST res-auth id ID #IMPLIED>

<!ATTLIST res-ref-name id ID #IMPLIED>

<!ATTLIST res-sharing-scope id ID #IMPLIED>

<!ATTLIST res-type id ID #IMPLIED>

<!ATTLIST resource-env-ref id ID #IMPLIED>

<!ATTLIST resource-env-ref-name id ID #IMPLIED>

<!ATTLIST resource-env-ref-type id ID #IMPLIED>

<!ATTLIST resource-ref id ID #IMPLIED>

<!ATTLIST role-link id ID #IMPLIED>

<!ATTLIST role-name id ID #IMPLIED>

<!ATTLIST run-as id ID #IMPLIED>

<!ATTLIST security-constraint id ID #IMPLIED>

<!ATTLIST security-role id ID #IMPLIED>

<!ATTLIST security-role-ref id ID #IMPLIED>

<!ATTLIST servlet id ID #IMPLIED>

Fi

343
<!ATTLIST servlet-class id ID #IMPLIED>

<!ATTLIST servlet-mapping id ID #IMPLIED>

<!ATTLIST servlet-name id ID #IMPLIED>

<!ATTLIST session-config id ID #IMPLIED>

<!ATTLIST session-timeout id ID #IMPLIED>

<!ATTLIST small-icon id ID #IMPLIED>

<!ATTLIST taglib id ID #IMPLIED>

<!ATTLIST taglib-location id ID #IMPLIED>

<!ATTLIST taglib-uri id ID #IMPLIED>

<!ATTLIST transport-guarantee id ID #IMPLIED>

<!ATTLIST url-pattern id ID #IMPLIED>

<!ATTLIST user-data-constraint id ID #IMPLIED>

<!ATTLIST web-app id ID #IMPLIED>

<!ATTLIST web-resource-collection id ID #IMPLIED>

<!ATTLIST web-resource-name id ID #IMPLIED>

<!ATTLIST welcome-file id ID #IMPLIED>

<!ATTLIST welcome-file-list id ID #IMPLIED>
nal Version

A P P E N D I X SRV.C

Glossary

Application Developer The producer of a web application. The output of an
Application Developer is a set of servlet classes, JSP pages, HTML pages, and
supporting libraries and files (such as images, compressed archive files, etc.)
for the web application. The Application Developer is typically an application
domain expert. The developer is required to be aware of the servlet environ-
ment and its consequences when programming, including concurrency con-
siderations, and create the web application accordingly.

Application Assembler Takes the output of the Application Developer and
ensures that it is a deployable unit. Thus, the input of the Application Assem-
bler is the servlet classes, JSP pages, HTML pages, and other supporting
libraries and files for the web application. The output of the Application
Assembler is a web application archive or a web application in an open direc-
tory structure.

Deployer The Deployer takes one or more web application archive files or
other directory structures provided by an Application Developer and deploys
the application into a specific operational environment. The operational envi-
ronment includes a specific servlet container and web server. The Deployer
must resolve all the external dependencies declared by the developer. To per-
form his role, the deployer uses tools provided by the Servlet Container Pro-
vider.

The Deployer is an expert in a specific operational environment. For example,
the Deployer is responsible for mapping the security roles defined by the
Application Developer to the user groups and accounts that exist in the opera-
tional environment where the web application is deployed.
344

CHAPTER345
principal A principal is an entity that can be authenticated by an authentication
protocol. A principal is identified by a principal name and authenticated by
using authentication data. The content and format of the principal name and
the authentication data depend on the authentication protocol.

role (development) The actions and responsibilities taken by various parties
during the development, deployment, and running of a web application. In
some scenarios, a single party may perform several roles; in others, each role
may be performed by a different party.

role (security) An abstract notion used by an Application Developer in an
application that can be mapped by the Deployer to a user, or group of users, in
a security policy domain.

security policy domain The scope over which security policies are defined
and enforced by a security administrator of the security service. A security
policy domain is also sometimes referred to as a realm.

security technology domain The scope over which the same security mecha-
nism, such as Kerberos, is used to enforce a security policy. Multiple security
policy domains can exist within a single technology domain.

Servlet Container Provider A vendor that provides the runtime environment,
namely the servlet container and possibly the web server, in which a web
application runs as well as the tools necessary to deploy web applications.

The expertise of the Container Provider is in HTTP-level programming. Since
this specification does not specify the interface between the web server and
the servlet container, it is left to the Container Provider to split the implemen-
tation of the required functionality between the container and the server.

servlet definition A unique name associated with a fully qualified class name
of a class implementing the Servlet interface. A set of initialization parameters
can be associated with a servlet definition.

servlet mapping A servlet definition that is associated by a servlet container
with a URL path pattern. All requests to that path pattern are handled by the
servlet associated with the servlet definition.

System Administrator The person responsible for the configuration and
administration of the servlet container and web server. The administrator is

346
also responsible for overseeing the well-being of the deployed web applica-
tions at run time.

This specification does not define the contracts for system management and
administration. The administrator typically uses runtime monitoring and man-
agement tools provided by the Container Provider and server vendors to
accomplish these tasks.

uniform resource locator (URL) A compact string representation of
resources available via the network. Once the resource represented by a URL
has been accessed, various operations may be performed on that resource.1 A
URL is a type of uniform resource identifier (URI). URLs are typically of the
form:

<protocol>//<servername>/<resource>

For the purposes of this specification, we are primarily interested in HTT-
based URLs which are of the form:

http[s]://<servername>[:port]/<url-path>[?<query-string>]

For example:

http://java.sun.com/products/servlet/index.html

https://javashop.sun.com/purchase

In HTTP-based URLs, the ‘/’ character is reserved to separate a hierarchical
path structure in the URL-path portion of the URL. The server is responsible
for determining the meaning of the hierarchical structure. There is no corre-
spondence between a URL-path and a given file system path.

web application A collection of servlets, JSP pages , HTML documents, and
other web resources which might include image files, compressed archives,
and other data. A web application may be packaged into an archive or exist in
an open directory structure.

All compatible servlet containers must accept a web application and perform
a deployment of its contents into their runtime. This may mean that a con-
tainer can run the application directly from a web application archive file or it
may mean that it will move the contents of a web application into the appro-
priate locations for that particular container.

1. See RFC 1738

CHAPTER347
web application archive A single file that contains all of the components of a
web application. This archive file is created by using standard JAR tools
which allow any or all of the web components to be signed.

Web application archive files are identified by the .war extension. A new
extension is used instead of .jar because that extension is reserved for files
which contain a set of class files and that can be placed in the classpath or
double clicked using a GUI to launch an application. As the contents of a web
application archive are not suitable for such use, a new extension was in order.

web application, distributable A web application that is written so that
it can be deployed in a web container distributed across multiple Java
virtual machines running on the same host or different hosts. The
deployment descriptor for such an application uses the distributable
element.

348

	Java™ Servlet Specification Version 2.5 MR6
	Preface
	SRV.P.1 Additional Sources
	SRV.P.2 Who Should Read This Specification
	SRV.P.3 API Reference
	SRV.P.4 Other Java Platform Specifications
	SRV.P.5 Other Important References
	SRV.P.6 Providing Feedback
	SRV.P.7 Acknowledgements

	Overview
	SRV.1.1 What is a Servlet?
	SRV.1.2 What is a Servlet Container?
	SRV.1.3 An Example
	SRV.1.4 Comparing Servlets with Other Technologies
	SRV.1.5 Relationship to Java Platform, Enterprise Edition
	SRV.1.6 Compatibility with Java Servlet Specification Version 2.3
	SRV.1.6.1 HttpSessionListener.sessionDestroyed
	SRV.1.6.2 ServletRequest methods getRemotePort, getLocalName, getLocalAddr, getLocalPort

	The Servlet Interface
	SRV.2.1 Request Handling Methods
	SRV.2.1.1 HTTP Specific Request Handling Methods
	SRV.2.1.2 Additional Methods
	SRV.2.1.3 Conditional GET Support

	SRV.2.2 Number of Instances
	SRV.2.2.1 Note About The Single Thread Model

	SRV.2.3 Servlet Life Cycle
	SRV.2.3.1 Loading and Instantiation
	SRV.2.3.2 Initialization
	SRV.2.3.3 Request Handling
	SRV.2.3.4 End of Service

	The Request
	SRV.3.1 HTTP Protocol Parameters
	SRV.3.1.1 When Parameters Are Available

	SRV.3.2 Attributes
	SRV.3.3 Headers
	SRV.3.4 Request Path Elements
	SRV.3.5 Path Translation Methods
	SRV.3.6 Cookies
	SRV.3.7 SSL Attributes
	SRV.3.8 Internationalization
	SRV.3.9 Request data encoding
	SRV.3.10 Lifetime of the Request Object

	Servlet Context
	SRV.4.1 Introduction to the ServletContext Interface
	SRV.4.2 Scope of a ServletContext Interface
	SRV.4.3 Initialization Parameters
	SRV.4.4 Context Attributes
	SRV.4.4.1 Context Attributes in a Distributed Container

	SRV.4.5 Resources
	SRV.4.6 Multiple Hosts and Servlet Contexts
	SRV.4.7 Reloading Considerations
	SRV.4.7.1 Temporary Working Directories

	The Response
	SRV.5.1 Buffering
	SRV.5.2 Headers
	SRV.5.3 Convenience Methods
	SRV.5.4 Internationalization
	SRV.5.5 Closure of Response Object
	SRV.5.6 Lifetime of the Response Object

	Filtering
	SRV.6.1 What is a filter?
	SRV.6.1.1 Examples of Filtering Components

	SRV.6.2 Main Concepts
	SRV.6.2.1 Filter Lifecycle
	SRV.6.2.2 Wrapping Requests and Responses
	SRV.6.2.3 Filter Environment
	SRV.6.2.4 Configuration of Filters in a Web Application
	SRV.6.2.5 Filters and the RequestDispatcher

	Sessions
	SRV.7.1 Session Tracking Mechanisms
	SRV.7.1.1 Cookies
	SRV.7.1.2 SSL Sessions
	SRV.7.1.3 URL Rewriting
	SRV.7.1.4 Session Integrity

	SRV.7.2 Creating a Session
	SRV.7.3 Session Scope
	SRV.7.4 Binding Attributes into a Session
	SRV.7.5 Session Timeouts
	SRV.7.6 Last Accessed Times
	SRV.7.7 Important Session Semantics
	SRV.7.7.1 Threading Issues
	SRV.7.7.2 Distributed Environments
	SRV.7.7.3 Client Semantics

	Dispatching Requests
	SRV.8.1 Obtaining a RequestDispatcher
	SRV.8.1.1 Query Strings in Request Dispatcher Paths

	SRV.8.2 Using a Request Dispatcher
	SRV.8.3 The Include Method
	SRV.8.3.1 Included Request Parameters

	SRV.8.4 The Forward Method
	SRV.8.4.1 Query String
	SRV.8.4.2 Forwarded Request Parameters

	SRV.8.5 Error Handling

	Web Applications
	SRV.9.1 Web Applications Within Web Servers
	SRV.9.2 Relationship to ServletContext
	SRV.9.3 Elements of a Web Application
	SRV.9.4 Deployment Hierarchies
	SRV.9.5 Directory Structure
	SRV.9.5.1 Example of Application Directory Structure

	SRV.9.6 Web Application Archive File
	SRV.9.7 Web Application Deployment Descriptor
	SRV.9.7.1 Dependencies On Extensions
	SRV.9.7.2 Web Application Class Loader

	SRV.9.8 Replacing a Web Application
	SRV.9.9 Error Handling
	SRV.9.9.1 Request Attributes
	SRV.9.9.2 Error Pages
	SRV.9.9.3 Error Filters

	SRV.9.10 Welcome Files
	SRV.9.11 Web Application Environment
	SRV.9.12 Web Application Deployment
	SRV.9.13 Inclusion of a web.xml Deployment Descriptor

	Application Lifecycle Events
	SRV.10.1 Introduction
	SRV.10.2 Event Listeners
	SRV.10.2.1 Event Types and Listener Interfaces
	SRV.10.2.2 An Example of Listener Use

	SRV.10.3 Listener Class Configuration
	SRV.10.3.1 Provision of Listener Classes
	SRV.10.3.2 Deployment Declarations
	SRV.10.3.3 Listener Registration
	SRV.10.3.4 Notifications At Shutdown

	SRV.10.4 Deployment Descriptor Example
	SRV.10.5 Listener Instances and Threading
	SRV.10.6 Listener Exceptions
	SRV.10.7 Distributed Containers
	SRV.10.8 Session Events

	Mapping Requests to Servlets
	SRV.11.1 Use of URL Paths
	SRV.11.2 Specification of Mappings
	SRV.11.2.1 Implicit Mappings
	SRV.11.2.2 Example Mapping Set

	Security
	SRV.12.1 Introduction
	SRV.12.2 Declarative Security
	SRV.12.3 Programmatic Security
	SRV.12.4 Roles
	SRV.12.5 Authentication
	SRV.12.5.1 HTTP Basic Authentication
	SRV.12.5.2 HTTP Digest Authentication
	SRV.12.5.3 Form Based Authentication
	SRV.12.5.4 HTTPS Client Authentication

	SRV.12.6 Server Tracking of Authentication Information
	SRV.12.7 Specifying Security Constraints
	SRV.12.7.1 Combining Constraints
	SRV.12.7.2 Example
	SRV.12.7.3 Processing Requests

	SRV.12.8 Default Policies
	SRV.12.9 Login and Logout

	Deployment Descriptor
	SRV.13.1 Deployment Descriptor Elements
	SRV.13.2 Rules for Processing the Deployment Descriptor
	SRV.13.3 Deployment Descriptor
	SRV.13.4 Deployment Descriptor Diagram
	SRV.13.5 Examples
	SRV.13.5.1 A Basic Example
	SRV.13.5.2 An Example of Security

	Java Enterprise Edition 5 Containers
	SRV.14.1 Sessions
	SRV.14.2 Web Applications
	SRV.14.2.1 Web Application Class Loader
	SRV.14.2.2 Web Application Environment

	SRV.14.3 Security
	SRV.14.3.1 Propagation of Security Identity in EJBTM Calls

	SRV.14.4 Deployment
	SRV.14.4.1 Deployment Descriptor Elements
	SRV.14.4.2 Packaging and Deployment of JAX-WS Components
	SRV.14.4.3 Rules for Processing the Deployment Descriptor

	SRV.14.5 Annotations and Resource Injection
	SRV.14.5.1 @DeclaresRoles
	SRV.14.5.2 @EJB Annotation
	SRV.14.5.3 @EJBs Annotation
	SRV.14.5.4 @Resource Annotation
	SRV.14.5.5 @PersistenceContext Annotation
	SRV.14.5.6 @PersistenceContexts Annotation
	SRV.14.5.7 @PersistenceUnit Annotation
	SRV.14.5.8 @PersistenceUnits Annotation
	SRV.14.5.9 @PostConstruct Annotation
	SRV.14.5.10 @PreDestroy Annotation
	SRV.14.5.11 @Resources Annotation
	SRV.14.5.12 @RunAs Annotation
	SRV.14.5.13 @WebServiceRef Annotation
	SRV.14.5.14 @WebServiceRefs Annotation

	javax.servlet
	SRV.15.1 Generic Servlet Interfaces and Classes
	SRV.15.2 The javax.servlet package
	SRV.15.2.1 Filter
	SRV.15.2.2 FilterChain
	SRV.15.2.3 FilterConfig
	SRV.15.2.4 GenericServlet
	SRV.15.2.5 RequestDispatcher
	SRV.15.2.6 Servlet
	SRV.15.2.7 ServletConfig
	SRV.15.2.8 ServletContext
	SRV.15.2.9 ServletContextAttributeEvent
	SRV.15.2.10 ServletContextAttributeListener
	SRV.15.2.11 ServletContextEvent
	SRV.15.2.12 ServletContextListener
	SRV.15.2.13 ServletException
	SRV.15.2.14 ServletInputStream
	SRV.15.2.15 ServletOutputStream
	SRV.15.2.16 ServletRequest
	SRV.15.2.17 ServletRequestAttributeEvent
	SRV.15.2.18 ServletRequestAttributeListener
	SRV.15.2.19 ServletRequestEvent
	SRV.15.2.20 ServletRequestListener
	SRV.15.2.21 ServletRequestWrapper
	SRV.15.2.22 ServletResponse
	SRV.15.2.23 ServletResponseWrapper
	SRV.15.2.24 SingleThreadModel
	SRV.15.2.25 UnavailableException

	javax.servlet.http
	SRV.16.1 Servlets Using HTTP Protocol
	SRV.16.1.1 Cookie
	SRV.16.1.2 HttpServlet
	SRV.16.1.3 HttpServletRequest
	SRV.16.1.4 HttpServletRequestWrapper
	SRV.16.1.5 HttpServletResponse
	SRV.16.1.6 HttpServletResponseWrapper
	SRV.16.1.7 HttpSession
	SRV.16.1.8 HttpSessionActivationListener
	SRV.16.1.9 HttpSessionAttributeListener
	SRV.16.1.10 HttpSessionBindingEvent
	SRV.16.1.11 HttpSessionBindingListener
	SRV.16.1.12 HttpSessionContext
	SRV.16.1.13 HttpSessionEvent
	SRV.16.1.14 HttpSessionListener
	SRV.16.1.15 HttpUtils

	Change Log
	SRV.S.17 Changes since Servlet 2.5 MR 5
	SRV.17.0.1 Clarify SRV 8.4 "The Forward Method"
	SRV.17.0.2 Update Deployment descriptor "http-method values allowed"
	SRV.17.0.3 Clarify SRV 7.7.1 "Threading Issues"

	SRV.S.18 Changes Since Servlet 2.5 MR 2
	SRV.18.0.1 Updated Annotation Requirements for Java EE containers
	SRV.18.0.2 Updated Java Enterprise Edition Requirements
	SRV.18.0.3 Clarified HttpServletRequest.getRequestURL()
	SRV.18.0.4 Removal of IllegalStateException from HttpSession.getId()
	SRV.18.0.5 ServletContext.getContextPath()
	SRV.18.0.6 Requirement for web.xml in web applications

	SRV.S.19 Changes Since Servlet 2.4
	SRV.19.0.1 Session Clarification
	SRV.19.0.2 Filter All Dispatches
	SRV.19.0.3 Multiple Occurrences of Servlet Mappings
	SRV.19.0.4 Multiple Occurrences Filter Mappings
	SRV.19.0.5 Support Alternative HTTP Methods with Authorization Constraints
	SRV.19.0.6 Minimum J2SE Requirement
	SRV.19.0.7 Annotations and Resource Injection
	SRV.19.0.8 SRV.9.9 ("Error Handling") Requirement Removed
	SRV.19.0.9 HttpServletRequest.isRequestedSessionIdValid() Clarification
	SRV.19.0.10 SRV.5.5 ("Closure of Response Object") Clarification
	SRV.19.0.11 ServletRequest.setCharacterEncoding() Clarified
	SRV.19.0.12 Java Enterprise Edition Requirements
	SRV.19.0.13 Servlet 2.4 MR Change Log Updates Added
	SRV.19.0.14 Synchronized Access Session Object Clarified

	SRV.S.20 Changes Since Servlet 2.3

	Deployment Descriptor Version 2.2
	SRV.A.1 Deployment Descriptor DOCTYPE
	SRV.A.2 DTD

	Deployment Descriptor Version 2.3
	SRV.B.1 Deployment Descriptor DOCTYPE
	SRV.B.2 DTD

	Glossary

